Uy » Choraklik online testlar » Matematika choraklik » 11-sinf Matematika 4-chorak Matematika choraklik 11-sinf Matematika 4-chorak InfoMaster Aprel 20, 2021 249 Ko'rishlar 83 izohlar SaqlashSaqlanganOlib tashlandi 3 0 OMAD YOR BO'LSIN! 11-sinf Matematika 4-chorak Testni Salomov Sardor tayyorladi. 1 / 25 f(x)=2x+3 funksiyasi uchun A(1;5) nuqtadan o’tuvchi boshlang’ich funksiyasini toping. A) F(x)=x²+3x+1 B) F(x)=x²+3x-1 C) F(x)=x²-3x+1 D) F(x)=x²-3x-1 2 / 25 Funksiyaning statsionar nuqtalarini toping A) x=-1, x=3 B) x=-1, x=2 C) x=3, x=2 D) x=0, x=2 3 / 25 funksiyaning [-4;2] oraliqdagi eng katta qiymatini toping A) 17 B) 14 C) 18 D) 16 4 / 25 y=-3x3+2x2-4x+5 funksiyaga x0=-1 nuqtada o’tkazilgan urinma tenglamasining burchak koeffitsiyentini toping. A) 15 B) -17 C) 17 D) -13 5 / 25 Limitni hisoblang: A) -3 B) -4 C) 4 D) 3 6 / 25 Funksiya hosilasini toping: f(x)=5 A) x B) 0 C) 10 D) 5 7 / 25 A) 18 B) 20 C) 13 D) 14 8 / 25 funksiyaning [-4;1] kesmadagi eng kata qiymatini toping. A) 13 B) -4 C) -13 D) 131 9 / 25 funksiya hosilasining x0=-2 nuqtadagi qiymatini hisoblang. A) 38/31 B) -38/31 C) -38/961 D) 38/961 10 / 25 Tandirdan olingan nonning temperaturasi 20 minut ichida 1000 dan 600 gacha pasayadi. Tashqi muhit temperaturasi 250. Nonning temperaturasi qancha vaqtda 300 gacha pasayadi? A) 71 B) 61 C) 51 D) 41 11 / 25 To’g’ri to’rtburchak shaklidagi yer maydoninig atrofini o’rashmoqchi. 480 m panjara yordamida eng ko’pi bilan necha kvadrat metr yer maydonni o’rash mumkin? A) 14400 B) 8100 C) 25600 D) 19600 12 / 25 x=1, y=2x va y=2-x chiziqlari bilan chegaralangan sohaning yuzini toping A) log₃e B) log₄e C) ln4 D) ln3 13 / 25 f(x)=(sinx)cosx bo’lsa, f '(5π/6) ni toping A) (ln2+3)/2)*(√3^√3) B) (ln2+3)/2)*(√2^√2) C) (ln2+3)/2)*(√2^√3) D) (ln2-3)/2)*(√2^√3) 14 / 25 Bir burchagi 600 bo’lgan to’g’ri burchakli uchburchakka tomoni 6 ga teng romb shunday ichki chizilganki, 600 li burchak ular uchun umumiy, rombning barcha uchlari uchburchakning tomonlarida yotadi. Uchburchak yuzini toping A) (8√3)/2 B) √3/2 C) (81√3)/2 D) (1√3)/2 15 / 25 2cosx+sinx=-2 tenglamaning [-π;π] kesmada nechta ildizi bor A) Ø B) 2 C) 3 D) 1 16 / 25 Tekislikdagi 1 m masofada yotgan nuqtadan ikkita teng og’ma o’tkazilgan. Agar og’malar perpendikulyar va tekislikka o’tkazilgan perpendikulyar bilan 600 ga teng burchaklar tashkil etsa, og’malarning asoslari orasidagi masofani toping A) 2√3 B) 4√2 C) 2√2 D) 1 17 / 25 Voleybol jamoasi 9 ta o’yinchidan iborat. Boshlang’ich tarkibga 6 ta o’yinchini nechta usul bilan tanlab olish mumkin A) 42 B) 21 C) 168 D) 84 18 / 25 B,C,D,E nuqtalar aylanadagi, A esa aylanadan tashqaridagi nuqtalar. D nuqta AE kesmada, B esa AC kesmada yotadi. Agar AE=12 va AC=16 bo’lsa, BE vatar uzunligining CD vatar uzunligiga nisbatini toping A) 4 B) 3/4 C) 1 D) 3 19 / 25 y=x2-│2x-4│ funksiya grafigiga x=3 va x= -3 nuqtalarda o’tkazilgan urinmalar kesishish nuqtasi ordinatasini toping A) -6 B) -12 C) -9 D) -5 20 / 25 Aylanaga o’tkazilgan vatar uni 5:7 nisbatda bo’ladi. Ushbu vatarga tiralgan, aylanaga ichki chizilgan katta burchakni toping A) 105° B) 55° C) 125° D) 75° 21 / 25 Muntazam uchburchak tomoni 3 ga teng. Uchburchak tomonlari o’rtalari tutashtirilib, muntazam uchburchaklar hosil qilindi. Ichma-ich joylashgan uchburchaklar yuzlari yig’indisini toping A) 3√3 B) 3 C) 2√3 D) 2 22 / 25 aniq integralni hisoblang A) 6 B) 2 C) 2,5 D) 4 23 / 25 Trapetsiyaning kichik asosi 6 ga va yon tomoni 5 va 7 ga teng. Uning kata asosi ham butun son bo’lsa, perimetri eng ko’pi bilan nechaga teng bo’lishi mumkin A) 4 B) 3 C) 1 D) 3√2 24 / 25 tengsizlikning yechimi bo’lgan eng kichik natural sonni toping A) 4 B) 3 C) 1 D) 5 25 / 25 Ushbu funksiyasining boshlang’ich funksiyasini toping A) lnI(x-2)(x-3)I B) (x+2)(x+1) C) ln(|x+2|*|x+1|) D) lnIx-1I 0% Testni qayta ishga tushiring Baholash mezoni 86%-100% 5 baho 71%-85% 4 baho 56%-70% 3 baho 55% va kamiga 2 baho Fikr-mulohaza yuboring Tomonidan Wordpress Quiz plugin Author: InfoMaster Foydali bo'lsa mamnunmiz