Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 141 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 7 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 tenglamani yeching. A) 0 B) 2017 C) 2018 D) 2019 2 / 30 n ning qanday qiymatida ushbu 81 .82 .83 .….8n=51222 tenglik o’rinli bo’ladi? A) 10 B) 12 C) 14 D) 11 3 / 30 Ag ar tgα=2 bo’lsa, u holda ni hisoblang A) 10/3 B) 10/27 C) -10/27 D) -10/3 4 / 30 x2-5|x|-6=0 tenglama ildizini toping A) ±6 B) -1;-6 C) -1;6 D) ±;±6 5 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 2π/3 B) 3π/2 C) 3π/4 D) 4π/3 6 / 30 Soddalashtiring. (0<m<7) A) 2m-7 B) m C) 7 D) 7-2m 7 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 2222222175 B) 22222222220 C) 222222222222 D) 222220175 8 / 30 Tenglamani yeching. |x2-11x+10|=x2-11x+10 A) (-∞;1] B) [10;∞) C) (-∞;1]v[10;∞) D) 1; 10 9 / 30 Quyidagi va to’g’ri chiziqlarning o’zaro holatini aniqlang. A) o’zaro parallel B) ayqash to’gri chiziqlar C) o’zaro perpendikulyar D) o’zaro kesishadi 10 / 30 Tenglamaning ildizlari yig`indisini toping. A) 3 B) 5 C) 6 D) 4 11 / 30 Teng yonli trpetsiyaning asoslari 15 va 25 ga balandligi esa 15 ga teng trapetsiyaning dioganalini toping A) 28 B) 20 C) 25 D) 30 12 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) to’gri burchakli uchburchak B) teng tomonli uchburchak C) o’tkir burchakli uchburchak D) o’tmas burchakli uchburchak 13 / 30 Fazoda (1;2;3) nuqtalardan o’tuvchi to’g’ri chiziq tenglamasini tuzing. A) 2x+3y+z=0 B) x-1/2=y-2/3=z-3/4 C) x=y/3=z/2 D) -x-y+z=0 14 / 30 To‘g‘ri to‘rtburchakning eni 25% ga orttirildi, bo‘yi esa 25% ga kamaytirildi. Natijada uning yuzi qanday o‘zgardi? A) o‘zgarmaydi B) 6,25% ga kamayadi C) 2,5% ga ortadi D) 6,25% ga ortadi 15 / 30 sistema yagona yechimga ega bo’ladigan a ning barcha qiymatlari to’plamini toping. A) {-1;2} B) {2;4} C) {1;2} D) {-1;3} 16 / 30 y= funksiyaning aniqlanish sohasini toping A) (-∞;0)v(2;∞) B) (0,2) C) (-∞;0])v[2;∞) D) (2;∞) 17 / 30 (-3;4) nuqtaga absissa, ordinata o’qlariga va koordinata boshiga nisbatan simmetrik bo’lgan nuqtalarni tutashtirishdan hosil bo’lgan uchburchakning eng kata tomonini toping. A) 12 B) 24 C) 14 D) 10 18 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) 4sin2x*cos(cos2x) B) -4sin2x*cos(cos2x) C) 4sin2x*cos(2cos2x) D) -4sin2x*cos(2cos2x) 19 / 30 Qaysi javobda faqat juft funksiyalar ko’rsatilgan? A) 3, 4 B) 1, 3 C) 1,4 D) 2, 3 20 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²/4sin²α B) πa²(1+2cosα/4sin²) C) πa²(1-2sinα/4sin²) D) πa²/4cos²α 21 / 30 Agar sinx+cosx=a bo’lsa, ning qiymatini toping. A) 1/3 B) -1/2 C) 1/2 D) 2/5 22 / 30 m ning qanday eng katta butun qiymatida y=2x-mx-5+m funksiyaning grafigi 1,3,4 –choraklarda yotadi? A) 1 B) 5 C) 3 D) 2 23 / 30 bo’lsa, ni x orqali ifodalang. A) 2-x B) x/25 C) 2/x D) 25/x 24 / 30 Tengsizlikni yeching. A) to'g'ri javob yo'q B) 0 C) (-1/³ √2 ;0) D) (0;+∞) 25 / 30 a=sin 1; b=sin 2; c=sin 3; d=sin 4 va e=sin 5 sonlarni kamayish tartibida joylashtiring. A) b>a>c>d>e B) a>b>c>d>e C) e>b>a>d>c D) b>c>a>d>e 26 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 10 yoki 50 B) 2 yoki 50 C) 10 D) 50 27 / 30 Agar bank qo’yilgan pulga 40% yillik bersa, qo’yilgan 4500 so’m pul bir yildan so’ng qancha bo’ladi? A) 6300 B) 6200 C) 6100 D) 6000 28 / 30 sistema a ning qanday qiymatida cheksiz ko’p yechimga ega? A) (-∞;6])v[6;∞) B) (2;∞) C) 6 D) (-∞;6) 29 / 30 Bekzodda 50 so’m va Sobirda 70 so’m pul bor edi. Anvar Bekzodga o’z pulining 10 foizini bergandan so’ng, Bekzod Sobirga pulining yarmini berdi. So’ng Sobir Anvarga pulining 10 foizini berdi. Anvar o’zidagi pullarini hisoblab, pullari dastlabki holdagi puli bilan teng ekanligini bildi. Anvarda qancha pul bo’lgan? A) 400 B) 375 C) 127 D) 100 30 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) √3/2 B) 1 C) 1,5 D) √5/2 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz