Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 134 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 4 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 108 B) 48√3 C) 52√3 D) 54 2 / 30 sistemadan x+y ning qiymatini toping. A) -12 B) 35/4 C) 6 D) 12 3 / 30 Ushbu arifmetik progressiyaning manfiy hadlari yig’indisini toping. A) -0,25 B) -0,75 C) -0,5 D) -1 4 / 30 Anvar tub son o’yladi va o’ylagan sonini 5 ga ko’paytirib, 8 ni ayirgan edi, yana tub son hosil bo’ldi. Anvar qanday son o’ylagan? A) 412967 B) 2 C) aniqlab bo’lmaydi D) 374389 5 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) ln(ln x) B) lg(ln x) C) lg(lg x) D) ln(lg x) 6 / 30 Tenglamaning nechta ildizi bor? |x+1|=|2x-1| A) 2 B) 4 C) 1 D) 3 7 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 22222222220 B) 222222222222 C) 2222222175 D) 222220175 8 / 30 Hisoblang A) -1 B) 0 C) 1 D) 2 9 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 3 B) 4 C) 2 D) 1 10 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 3√2+2/4 B) 2√2/3 C) 3√3+1/5 D) 5√3+3/3 11 / 30 sistemadan x+y+z ning qiymatini toping. A) 150/41 B) -139/41 C) 139/41 D) 140/41 12 / 30 Hisoblang. A) 2/17 B) 17/34 C) 2/34 D) 15/34 13 / 30 Teng yonli uchburchakning tomonlari 5, 5 va 6 ga teng. Bu uchburchakning bissektiritsalari va medianalari kesishgan nuqtalar A) 1/6 B) 1 C) 1,2 D) 1/2 14 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 30° B) 72° C) 90° D) 60° 15 / 30 Radiusi 25 bo’lgan doirada 48 ga teng vatar o’tkazilgan. Doira markazidan shu vatargacha masofani toping. A) 8 B) 9 C) 7 D) 10 16 / 30 y= funktsiyaning aniqlanish sohasini toping. A) [2;∞) B) (-∞;2)v(2;∞) C) (2;∞) D) (-∞;2) 17 / 30 Tomoni 6 ga teng bo`lgan teng tomonli uchburchakga tashqi chizilgan doiraning yuzini toping. A) 10 π B) 12π C) 7 π D) 6 π 18 / 30 A) 1 B) 5 C) 2 D) 3 19 / 30 Qaysi javobda faqat juft funksiyalar ko’rsatilgan? A) 2, 3 B) 3, 4 C) 1, 3 D) 1,4 20 / 30 Soddalashtiring. A) 2018a/a+1 B) 2019 C) a+1 D) 2018 21 / 30 Ostki asosining yuzi 32π va ustki asosining yuzi 18π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning sirtini toping. A) 96π B) 72π C) 100π D) 56π 22 / 30 Agar va b-a=4 bo’lsa, a+b ni toping. A) 3,5 B) 2 C) 3 D) 4 23 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusidan katta bo’lgan uchburchaklar sonini toping. A) 2019 B) 0 C) 1 D) cheksiz ko’p 24 / 30 Bekzodda 50 so’m va Sobirda 70 so’m pul bor edi. Anvar Bekzodga o’z pulining 10 foizini bergandan so’ng, Bekzod Sobirga pulining yarmini berdi. So’ng Sobir Anvarga pulining 10 foizini berdi. Anvar o’zidagi pullarini hisoblab, pullari dastlabki holdagi puli bilan teng ekanligini bildi. Anvarda qancha pul bo’lgan? A) 100 B) 127 C) 400 D) 375 25 / 30 y= funksiyaning aniqlanish sohasini toping A) (-∞;0])v[2;∞) B) (0,2) C) (-∞;0)v(2;∞) D) (2;∞) 26 / 30 Hisoblang A) 2√3 B) 3√3 C) √3 D) 1 27 / 30 Muntazam uchburchakli piramidaning yon qirrasi asos tekisligi bilan 45o li burchak tashkil etgan bo‘lsa, u holda piramidaning yon sirti yuzining uning asosi yuziga nisbatini toping. A) 3√3 B) 4 C) 2√3 D) 2√5 28 / 30 Rombning balandligi 8 ga dioganallarining ko’paytmasi 80 ga teng. Rombning perimetrini toping A) 24 B) 16 C) 32 D) 20 29 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4716 B) 4720 C) 4680 D) 4760 30 / 30 Tengsizlikni yeching. A) (-3;2)v(2;4) B) (-4;2)v(2;3) C) (2;4) D) (-3;2) 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz