Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 134 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 4 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 x(t)=t2+6t+5 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakat boshlangandan necha sekund o’tgach boshlang’ich nuqtaga nisbatan 77 metr masofaga siljiydi? A) 7 B) 10 C) 6 D) 8 2 / 30 Parallelogrammning tomonlari nisbati 3:5 kabi. Agar parallelogrmmning perimetri 48 ga burchaklaridan biri 1200 ga teng bo’lsa, uning yuzini toping. A) 67,5 B) 135√3/4 C) 67,5√3 D) 48√3 3 / 30 A) 0 B) 2 C) √6 D) 1 4 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 13 ga, katetlaridan biri 52 ga teng. Gipotenuzaga tushirilgan balandlik uzunligini toping A) 7 B) 5 C) 6 D) 4 5 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) to’gri burchakli uchburchak B) o’tkir burchakli uchburchak C) o’tmas burchakli uchburchak D) teng tomonli uchburchak 6 / 30 “Tutgan balig‘ining og‘irligi qancha?” degan savolga baliqchi: “Baliqning dumi 3 kg, boshi uning dumi hamda tanasi yarmining og‘irligiga teng, tanasi esa boshi va dumining og‘irligiga teng”, deb javob berdi. Baliqning og‘irligini (kg) toping. A) 3 B) 6 C) 12 D) 18 7 / 30 Radiuslari orasidagi burchagi 36o va radiusi 5 ga teng bo`lgan sektor yoyining uzunligini toping. A) 2π B) 2π/3 C) π D) π/2 8 / 30 Teng yonli trpetsiyaning asoslari 15 va 25 ga balandligi esa 15 ga teng trapetsiyaning dioganalini toping A) 25 B) 28 C) 30 D) 20 9 / 30 Tenglamani yeching. |x2-11x+10|=x2-11x+10 A) (-∞;1] B) 1; 10 C) (-∞;1]v[10;∞) D) [10;∞) 10 / 30 Agar funksiya berilgan bo’lsa, u holda M=ning qiymatini toping. A) e⁵⁰⁵⁰ B) e⁻⁴⁹⁵⁰ C) e⁴⁹⁵⁰ D) e⁻⁵⁰⁵⁰ 11 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping. A) 16 B) 18 C) 17 D) 14 12 / 30 tenglamani yeching. A) 2019 B) 0 C) 2017 D) 2018 13 / 30 Agar bank qo’yilgan pulga 40% yillik bersa, qo’yilgan 4500 so’m pul bir yildan so’ng qancha bo’ladi? A) 6000 B) 6100 C) 6300 D) 6200 14 / 30 Agar sinx+cosx=a bo’lsa, ning qiymatini toping. A) 2/5 B) 1/2 C) 1/3 D) -1/2 15 / 30 200 kishidan iborat turistlar guruxida 140 kishi ingliz tilini, 90 kishi nemis tilini va 46 kishi ikkala tilni biladi. Ikkala tilni xam bilmaydigan turistlar necha foizni tashkil qiladi. A) 8 B) 4 C) 16 D) 12 16 / 30 sistema yagona yechimga ega bo’ladigan a ning barcha qiymatlari to’plamini toping. A) {2;4} B) {-1;3} C) {1;2} D) {-1;2} 17 / 30 Ushbu funksiyaning boshlang’ich funksiyasini toping. A) ln(|x+4*|x-1|)+c B) ln|x+4/x-1|+c C) ln|x-1/x+4|+c D) ln(|x+4+|x-1|)+c 18 / 30 sonning oxirgi raqamini toping. A) 6 B) 8 C) 2 D) 4 19 / 30 Agar arctga+ arctgb + arctgc= bo’lsa, a+b+c ni toping. A) abc B) ab C) 1 D) ab/c 20 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4716 B) 4720 C) 4760 D) 4680 21 / 30 Muntazam uchburchakli piramidaning yon qirrasi asos tekisligi bilan 45o li burchak tashkil etgan bo‘lsa, u holda piramidaning yon sirti yuzining uning asosi yuziga nisbatini toping. A) 3√3 B) 2√3 C) 4 D) 2√5 22 / 30 (-3;4) nuqtaga absissa, ordinata o’qlariga va koordinata boshiga nisbatan simmetrik bo’lgan nuqtalarni tutashtirishdan hosil bo’lgan uchburchakning eng kata tomonini toping. A) 14 B) 24 C) 12 D) 10 23 / 30 x2-5|x|-6=0 tenglama ildizini toping A) -1;6 B) ±;±6 C) ±6 D) -1;-6 24 / 30 ABC muntazam uchburchak ichidan ixtiyoriy P nuqta olinib, undan BC, CA va AB tomonlarga mos ravishda PD, PE va PF perpendikulyarlar tushirilgan bo’lsa,ni toping. A) 1 B) 1/√3 C) 1/√2 D) 0,5 25 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) 3√2π/4 B) 8√2π/5 C) (5√3+3)π/3 D) 64√2π/3 26 / 30 Hisoblang: A) 3 B) -1 C) 1 D) 2 27 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 10 yoki 50 B) 50 C) 10 D) 2 yoki 50 28 / 30 bo’lsa ni toping. Bunda funksiya f(x) ga teskari funksiya. A) -14 B) -12 C) -10 D) -4 29 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (4; -3) B) (-7;-1) C) (7; 1) D) (-7; 1) 30 / 30 tenglamalar sistemasini yeching A) (-4;-4) B) (4;4) C) (-4;4) D) (4;–4) 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz