Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 162 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 2 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 a=sin 1; b=sin 2; c=sin 3; d=sin 4 va e=sin 5 sonlarni kamayish tartibida joylashtiring. A) e>b>a>d>c B) a>b>c>d>e C) b>a>c>d>e D) b>c>a>d>e 2 / 30 y=cos(2sinx) funksiyaning qiymatlar sohasini toping. A) [0;cos2] B) [-1;1] C) [cos2;1] D) [0;1] 3 / 30 Ushbu arifmetik progressiyaning manfiy hadlari yig’indisini toping. A) -1 B) -0,75 C) -0,5 D) -0,25 4 / 30 Agar arctga+ arctgb + arctgc= bo’lsa, a+b+c ni toping. A) 1 B) ab C) ab/c D) abc 5 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) 2√2 B) √2 C) 2 D) 4 6 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping. A) 16 B) 14 C) 18 D) 17 7 / 30 200 kishidan iborat turistlar guruxida 140 kishi ingliz tilini, 90 kishi nemis tilini va 46 kishi ikkala tilni biladi. Ikkala tilni xam bilmaydigan turistlar necha foizni tashkil qiladi. A) 8 B) 16 C) 4 D) 12 8 / 30 y= funktsiyaning aniqlanish sohasini toping. A) (2;∞) B) (-∞;2) C) [2;∞) D) (-∞;2)v(2;∞) 9 / 30 Tenglamani yeching. (x+2)+(x+4)+(x+6)+…+(x+100)=2800 A) 4 B) 7 C) 3 D) 5 10 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) to’gri burchakli uchburchak B) o’tkir burchakli uchburchak C) o’tmas burchakli uchburchak D) teng tomonli uchburchak 11 / 30 A) √6 B) 1 C) 0 D) 2 12 / 30 ABCD kvadrat ichidan olingan O nuqtadan A, B, C uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5 ga teng bo’lsa, u holda OD kesma uzunligini toping. A) 6 B) √37 C) √32 D) 3 13 / 30 Tenglamaning ildizlari yig’indisi va ko’paytmasining yig’indisini toping. |x+1|.|x-4|=5 A) 6 B) 9 C) -3 D) -6 14 / 30 Teng yonli uchburchakning tomonlari 5, 5 va 6 ga teng. Bu uchburchakning bissektiritsalari va medianalari kesishgan nuqtalar A) 1/2 B) 1 C) 1,2 D) 1/6 15 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 120 B) 47 C) 60 D) 18 16 / 30 7 sonini uchta natural sonlar yig’indisi ko’rinishida necha xil usulda yozish mumkin? A) 3 B) 6 C) 5 D) 4 17 / 30 funksiya uchun quyidagi mulohazalardan qaysi biri o’rinli? A) juft funksiya B) juft ham emas, toq ham emas funksiya C) bunday funksiya mavjud emas D) toq funksiya 18 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 8 B) 6 C) 5 D) 4 19 / 30 AA1A2A3A4A5A6 muntazam oltiburchakli piramidaning hajmi ga va balandligi 2 ga teng bo‘lsa, u holda AA2A6 kesim yuzini toping. A) √5 B) 2 C) 3 D) √15 20 / 30 Quyidagilardan qaysi biri barcha lar uchun ma’noga ega (aniqlangan)? A) 4k+1/1/8:7-1/56 B) (512-1/2⁻⁹)° C) ⁴ᴷ⁺³√-√2k+1 D) ²ᴷ⁺⁴v2k+1/k²+1 21 / 30 Sin9x =4sin3x tenglamani yeching A) π/3+πn, n€Ζ B) πn, n€Ζ C) π/2+πn, n€Ζ D) πn/3, n€Ζ 22 / 30 Hisoblang: A) -1 B) 1 C) 2 D) 3 23 / 30 Ostki asosining yuzi 32π va ustki asosining yuzi 18π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning sirtini toping. A) 56π B) 100π C) 72π D) 96π 24 / 30 bo’lsa, ni x orqali ifodalang. A) 25/x B) x/25 C) 2-x D) 2/x 25 / 30 Soddalashtiring. (0<m<7) A) 7 B) m C) 7-2m D) 2m-7 26 / 30 y= funksiyaning aniqlanish sohasini toping A) (-∞;0)v(2;∞) B) (2;∞) C) (0,2) D) (-∞;0])v[2;∞) 27 / 30 Bekzodda 50 so’m va Sobirda 70 so’m pul bor edi. Anvar Bekzodga o’z pulining 10 foizini bergandan so’ng, Bekzod Sobirga pulining yarmini berdi. So’ng Sobir Anvarga pulining 10 foizini berdi. Anvar o’zidagi pullarini hisoblab, pullari dastlabki holdagi puli bilan teng ekanligini bildi. Anvarda qancha pul bo’lgan? A) 400 B) 375 C) 127 D) 100 28 / 30 Bog’bon uch kun davomida o’nta daraxt ko’chati o’tqazishi lozim. Agar bog’bon bir kunda eng kamida bitta ko’chat o’tqazadigan bo’lsa, u shu ishni kunlar bo’yicha necha xil usul bilan taqsimlashi mumkin? A) 25 B) 36 C) 32 D) 30 29 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 42 B) 36 C) 32 D) 38 30 / 30 Ifodani soddalashtiring. 2 cos55o.cos40o.sin55o+cos110o.sin40o A) 0 B) 2 C) 1 D) 0,5 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz