Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 141 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 7 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Muntazam uchburchakli piramidaning yon qirrasi asos tekisligi bilan 45o li burchak tashkil etgan bo‘lsa, u holda piramidaning yon sirti yuzining uning asosi yuziga nisbatini toping. A) 2√5 B) 2√3 C) 3√3 D) 4 2 / 30 sistemada xy ning qiymatini toping. A) 80 B) 60 C) 75 D) 64 3 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) ln(ln x) B) ln(lg x) C) lg(ln x) D) lg(lg x) 4 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 3π/4 B) 4π/3 C) 2π/3 D) 3π/2 5 / 30 Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY uchburchak qanday uchburchak bo‘ladi? A) to`g`ri burchakli uchburchak B) teng yonli uchburchak C) ixtiyoriy uchburchak D) muntazam uchburchak 6 / 30 Tenglamaning ildizlari yig’indisi va ko’paytmasining yig’indisini toping. |x+1|.|x-4|=5 A) -6 B) -3 C) 6 D) 9 7 / 30 Bog’bon uch kun davomida o’nta daraxt ko’chati o’tqazishi lozim. Agar bog’bon bir kunda eng kamida bitta ko’chat o’tqazadigan bo’lsa, u shu ishni kunlar bo’yicha necha xil usul bilan taqsimlashi mumkin? A) 32 B) 25 C) 36 D) 30 8 / 30 Teng yonli trpetsiyaning asoslari 15 va 25 ga balandligi esa 15 ga teng trapetsiyaning dioganalini toping A) 28 B) 30 C) 25 D) 20 9 / 30 Agar bank qo`yilgan pulga 40% yillik foyda bersa, qo`yilgan 5000 so`m pul bir yildan keyin qancha bo`ladi ? A) 6200 B) 7200 C) 7000 D) 6900 10 / 30 Hisoblang A) -1 B) 1 C) 2 D) 0 11 / 30 bo’lsa, ni x orqali ifodalang. A) 2-x B) 2/x C) 25/x D) x/25 12 / 30 sistemadan x+y+z ning qiymatini toping. A) 150/41 B) 140/41 C) -139/41 D) 139/41 13 / 30 Tenglamaning ildizlari yig`indisini toping. A) 3 B) 4 C) 5 D) 6 14 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping. A) 14 B) 18 C) 17 D) 16 15 / 30 Hisoblang. A) 2/34 B) 17/34 C) 2/17 D) 15/34 16 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 10 yoki 50 B) 50 C) 2 yoki 50 D) 10 17 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusidan katta bo’lgan uchburchaklar sonini toping. A) cheksiz ko’p B) 2019 C) 1 D) 0 18 / 30 Soat 3:37 bo’lganda minut va soat millari orasidagi burchakni toping. A) 113,5° B) 113° C) 100° D) 112,5° 19 / 30 tenglamani yeching. A) 2019 B) 2018 C) 2017 D) 0 20 / 30 Tenglamani yeching. |x2-11x+10|=x2-11x+10 A) 1; 10 B) (-∞;1] C) [10;∞) D) (-∞;1]v[10;∞) 21 / 30 Yuzasi 10 ga teng bo’lgan kvadratning ketma-ket ikki uchidan o’tuvchi aylana chizilgan. Uchinchi uchidan aylanaga urunma o’tkazilgan. Urunma tomondan ikki marta katta bo’lsa, aylana radiusini toping. A) 6 B) 4 C) 5 D) 10 22 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakning perimetri 48 va aylana radiusi 7 ga teng bo‘lsa, u holda kesma uzunligini toping A) 12 B) 25 C) 30 D) 15 23 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 1 B) 3 C) 2 D) 4 24 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 52√3 B) 108 C) 48√3 D) 54 25 / 30 Ostki asosining yuzi 32π va ustki asosining yuzi 18π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning sirtini toping. A) 72π B) 96π C) 56π D) 100π 26 / 30 Tengsizlikni yeching. A) (-3;2)v(2;4) B) (-4;2)v(2;3) C) (2;4) D) (-3;2) 27 / 30 tenglamalar sistemasini yeching A) (-4;4) B) (-4;-4) C) (4;–4) D) (4;4) 28 / 30 y=cos(2sinx) funksiyaning qiymatlar sohasini toping. A) [0;cos2] B) [-1;1] C) [0;1] D) [cos2;1] 29 / 30 Radiusi 25 bo’lgan doirada 48 ga teng vatar o’tkazilgan. Doira markazidan shu vatargacha masofani toping. A) 7 B) 10 C) 9 D) 8 30 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 1; 2; 1,5; 1,2 ga teng bo’ladigan barcha to’g’ri to’rtburchaklar sonini toping A) 0 B) 2 C) cheksiz ko’p D) 1 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz