Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 153 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 bo’lsa, ni x orqali ifodalang. A) 2-x B) 2/x C) 25/x D) x/25 2 / 30 integralning qiymatini toping. A) -π/2 B) 0 C) π/2 D) π/4 3 / 30 Sin9x =4sin3x tenglamani yeching A) πn, n€Ζ B) π/3+πn, n€Ζ C) πn/3, n€Ζ D) π/2+πn, n€Ζ 4 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 13 ga, katetlaridan biri 52 ga teng. Gipotenuzaga tushirilgan balandlik uzunligini toping A) 5 B) 4 C) 6 D) 7 5 / 30 sistema yagona yechimga ega bo’ladigan a ning barcha qiymatlari to’plamini toping. A) {-1;3} B) {2;4} C) {1;2} D) {-1;2} 6 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 60° B) 72° C) 30° D) 90° 7 / 30 200 kishidan iborat turistlar guruxida 140 kishi ingliz tilini, 90 kishi nemis tilini va 46 kishi ikkala tilni biladi. Ikkala tilni xam bilmaydigan turistlar necha foizni tashkil qiladi. A) 16 B) 12 C) 8 D) 4 8 / 30 Tengsizlik nechta butun yechimga ega? A) 3 B) 1 C) 4 D) cheksiz ko’p 9 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²(1+2cosα/4sin²) B) πa²(1-2sinα/4sin²) C) πa²/4sin²α D) πa²/4cos²α 10 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 2200 B) 2100 C) 1900 D) 2000 11 / 30 y= funktsiyaning aniqlanish sohasini toping. A) (-∞;2)v(2;∞) B) [2;∞) C) (2;∞) D) (-∞;2) 12 / 30 sistema a ning qanday qiymatida cheksiz ko’p yechimga ega? A) (2;∞) B) 6 C) (-∞;6) D) (-∞;6])v[6;∞) 13 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) o’tkir burchakli uchburchak B) to’gri burchakli uchburchak C) teng tomonli uchburchak D) o’tmas burchakli uchburchak 14 / 30 Tomoni 12 ga teng bo`lgan teng tomonli uchburchakga ichki chizilgan aylana uzunligini toping. A) 12π B) 3π C) 4√3π D) 2√3π 15 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 9 B) 12 C) 10 D) 11 16 / 30 sin2x-cos2x=1 tenglama [-π; 2π] oraliqda nechta ildizga ega? A) 7 B) 9 C) 6 D) 10 17 / 30 Tenglamani yeching. |x2-11x+10|=x2-11x+10 A) (-∞;1]v[10;∞) B) (-∞;1] C) [10;∞) D) 1; 10 18 / 30 Agar sinx+cosx=a bo’lsa, ning qiymatini toping. A) 2/5 B) -1/2 C) 1/2 D) 1/3 19 / 30 Quyidagi va to’g’ri chiziqlarning o’zaro holatini aniqlang. A) o’zaro perpendikulyar B) ayqash to’gri chiziqlar C) o’zaro kesishadi D) o’zaro parallel 20 / 30 Hisoblang: A) -1 B) 2 C) 3 D) 1 21 / 30 Rasmda ko‘rsatilgan ko‘pyoqlardan qaysi birida 4 ta yoq, 6 ta qirra bor? A) 2 B) 1, 3 C) 1, 2 D) 3 22 / 30 Ushbu arifmetik progressiyaning manfiy hadlari yig’indisini toping. A) -1 B) -0,75 C) -0,25 D) -0,5 23 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 6 B) 8 C) 4 D) 5 24 / 30 Agar arctga+ arctgb + arctgc= bo’lsa, a+b+c ni toping. A) abc B) ab C) ab/c D) 1 25 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 48√3 B) 54 C) 52√3 D) 108 26 / 30 O’qishni bilmaydigan bola alifbening A,A,A, N,N, S- 6 ta harflarini ixtiyoriy ravishda terib chiqadi. Bunda ANANAS so’zining hosil bo’lish ehtimolini toping. A) 5/24 B) 5/720 C) 1/60 D) 6/720 27 / 30 Tomoni 6 ga teng bo`lgan teng tomonli uchburchakga tashqi chizilgan doiraning yuzini toping. A) 6 π B) 12π C) 10 π D) 7 π 28 / 30 funksiya uchun quyidagi mulohazalardan qaysi biri o’rinli? A) toq funksiya B) juft funksiya C) bunday funksiya mavjud emas D) juft ham emas, toq ham emas funksiya 29 / 30 y= funksiyaning aniqlanish sohasini toping A) (-∞;0])v[2;∞) B) (-∞;0)v(2;∞) C) (2;∞) D) (0,2) 30 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) 1,5 B) √5/2 C) 1 D) √3/2 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz