Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 121 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 1 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) 2 B) √2 C) √3 D) 1 2 / 30 Tenglamani yeching. (x+2)+(x+4)+(x+6)+…+(x+100)=2800 A) 7 B) 3 C) 4 D) 5 3 / 30 tenglamani yeching. A) 2019 B) 2017 C) 0 D) 2018 4 / 30 Ushbu arifmetik progressiyaning manfiy hadlari yig’indisini toping. A) -1 B) -0,5 C) -0,75 D) -0,25 5 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 1; 2; 1,5; 1,2 ga teng bo’ladigan barcha to’g’ri to’rtburchaklar sonini toping A) 0 B) cheksiz ko’p C) 2 D) 1 6 / 30 7 sonini uchta natural sonlar yig’indisi ko’rinishida necha xil usulda yozish mumkin? A) 6 B) 5 C) 3 D) 4 7 / 30 To’g’ri burchakli uchburchakning yuzi 24 ga, katetlaridan biri 6 ga teng bo’lsa, gipotenuzasini toping A) √46 B) 11 C) 10 D) 12 8 / 30 y= funktsiyaning aniqlanish sohasini toping. A) (-∞;2) B) [2;∞) C) (2;∞) D) (-∞;2)v(2;∞) 9 / 30 “Tutgan balig‘ining og‘irligi qancha?” degan savolga baliqchi: “Baliqning dumi 3 kg, boshi uning dumi hamda tanasi yarmining og‘irligiga teng, tanasi esa boshi va dumining og‘irligiga teng”, deb javob berdi. Baliqning og‘irligini (kg) toping. A) 6 B) 12 C) 18 D) 3 10 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 10 yoki 50 B) 50 C) 2 yoki 50 D) 10 11 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 32 B) 38 C) 42 D) 36 12 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 72° B) 60° C) 30° D) 90° 13 / 30 Tomoni 2 ga teng kvadratga tashqi chizilgan aylana uzunligini toping. A) 2π/3 B) 3π C) 4π D) 2π 14 / 30 Tengsizlik nechta butun yechimga ega? A) 4 B) 1 C) cheksiz ko’p D) 3 15 / 30 Quyidagilardan qaysi biri barcha lar uchun ma’noga ega (aniqlangan)? A) (512-1/2⁻⁹)° B) ⁴ᴷ⁺³√-√2k+1 C) ²ᴷ⁺⁴v2k+1/k²+1 D) 4k+1/1/8:7-1/56 16 / 30 Radiusi 25 bo’lgan doirada 48 ga teng vatar o’tkazilgan. Doira markazidan shu vatargacha masofani toping. A) 7 B) 10 C) 8 D) 9 17 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) 2√2 B) 4 C) 2 D) √2 18 / 30 Fazoda (1;2;3) nuqtalardan o’tuvchi to’g’ri chiziq tenglamasini tuzing. A) x=y/3=z/2 B) -x-y+z=0 C) 2x+3y+z=0 D) x-1/2=y-2/3=z-3/4 19 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 47 B) 120 C) 60 D) 18 20 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²/4sin²α B) πa²(1-2sinα/4sin²) C) πa²/4cos²α D) πa²(1+2cosα/4sin²) 21 / 30 bo’lsa, ni x orqali ifodalang. A) 2/x B) 2-x C) 25/x D) x/25 22 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) lg(ln x) B) ln(ln x) C) ln(lg x) D) lg(lg x) 23 / 30 Ostki asosining yuzi 32π va ustki asosining yuzi 18π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning sirtini toping. A) 56π B) 96π C) 72π D) 100π 24 / 30 Hisoblang. A) 2/34 B) 2/17 C) 15/34 D) 17/34 25 / 30 sistema a ning qanday qiymatida cheksiz ko’p yechimga ega? A) 6 B) (-∞;6) C) (-∞;6])v[6;∞) D) (2;∞) 26 / 30 Quyidagi 2x-y+3z=2018 va x+5y+z=2019 tekisliklarning holatini aniqlang. A) o’zaro parallel B) o’zaro perpendikulyar C) ayqash D) aniqlab bo’lmaydi 27 / 30 |x2-5x-14|+20≥5|x+2|+4|x-7| tengsizlikni yeching. A) [2;4]v{2}v[3;∞) B) [1;6] C) (-∞;-6]v{2}v[12;∞) D) [-2;4]v{6} 28 / 30 integralning qiymatini toping. A) 0 B) π/2 C) -π/2 D) π/4 29 / 30 Ag ar tgα=2 bo’lsa, u holda ni hisoblang A) -10/3 B) 10/27 C) -10/27 D) 10/3 30 / 30 Yuzasi 10 ga teng bo’lgan kvadratning ketma-ket ikki uchidan o’tuvchi aylana chizilgan. Uchinchi uchidan aylanaga urunma o’tkazilgan. Urunma tomondan ikki marta katta bo’lsa, aylana radiusini toping. A) 10 B) 5 C) 6 D) 4 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz