Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 123 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 2 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusidan katta bo’lgan uchburchaklar sonini toping. A) 0 B) cheksiz ko’p C) 2019 D) 1 2 / 30 Anvar tub son o’yladi va o’ylagan sonini 5 ga ko’paytirib, 8 ni ayirgan edi, yana tub son hosil bo’ldi. Anvar qanday son o’ylagan? A) 412967 B) 2 C) 374389 D) aniqlab bo’lmaydi 3 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 48√3 B) 52√3 C) 108 D) 54 4 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) lg(ln x) B) ln(lg x) C) lg(lg x) D) ln(ln x) 5 / 30 (-3;4) nuqtaga absissa, ordinata o’qlariga va koordinata boshiga nisbatan simmetrik bo’lgan nuqtalarni tutashtirishdan hosil bo’lgan uchburchakning eng kata tomonini toping. A) 24 B) 14 C) 10 D) 12 6 / 30 Bekzodda 50 so’m va Sobirda 70 so’m pul bor edi. Anvar Bekzodga o’z pulining 10 foizini bergandan so’ng, Bekzod Sobirga pulining yarmini berdi. So’ng Sobir Anvarga pulining 10 foizini berdi. Anvar o’zidagi pullarini hisoblab, pullari dastlabki holdagi puli bilan teng ekanligini bildi. Anvarda qancha pul bo’lgan? A) 127 B) 100 C) 375 D) 400 7 / 30 sistema a ning qanday qiymatida cheksiz ko’p yechimga ega? A) (-∞;6) B) (-∞;6])v[6;∞) C) 6 D) (2;∞) 8 / 30 Agar bank qo`yilgan pulga 40% yillik foyda bersa, qo`yilgan 5000 so`m pul bir yildan keyin qancha bo`ladi ? A) 6200 B) 7000 C) 6900 D) 7200 9 / 30 Hisoblang A) √3 B) 3√3 C) 1 D) 2√3 10 / 30 200 kishidan iborat turistlar guruxida 140 kishi ingliz tilini, 90 kishi nemis tilini va 46 kishi ikkala tilni biladi. Ikkala tilni xam bilmaydigan turistlar necha foizni tashkil qiladi. A) 4 B) 12 C) 16 D) 8 11 / 30 ABC muntazam uchburchak ichidan ixtiyoriy P nuqta olinib, undan BC, CA va AB tomonlarga mos ravishda PD, PE va PF perpendikulyarlar tushirilgan bo’lsa,ni toping. A) 0,5 B) 1 C) 1/√2 D) 1/√3 12 / 30 y= funktsiyaning aniqlanish sohasini toping. A) [2;∞) B) (-∞;2)v(2;∞) C) (-∞;2) D) (2;∞) 13 / 30 Ostki asosining yuzi 32π va ustki asosining yuzi 18π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning sirtini toping. A) 96π B) 56π C) 100π D) 72π 14 / 30 a ning qanday qiymatlarida ushbu 7x-a-13=(a-5)(x+7) tenglama yagona yechimga ega A) a ning bunday qiymati yo’q B) a≠12 C) a=12 D) a≠5 15 / 30 sonning oxirgi raqamini toping. A) 4 B) 2 C) 6 D) 8 16 / 30 Muntazam uchburchakli piramidaning yon qirrasi asos tekisligi bilan 45o li burchak tashkil etgan bo‘lsa, u holda piramidaning yon sirti yuzining uning asosi yuziga nisbatini toping. A) 2√3 B) 4 C) 2√5 D) 3√3 17 / 30 Yuzasi 10 ga teng bo’lgan kvadratning ketma-ket ikki uchidan o’tuvchi aylana chizilgan. Uchinchi uchidan aylanaga urunma o’tkazilgan. Urunma tomondan ikki marta katta bo’lsa, aylana radiusini toping. A) 10 B) 4 C) 5 D) 6 18 / 30 n ning qanday qiymatida ushbu 81 .82 .83 .….8n=51222 tenglik o’rinli bo’ladi? A) 14 B) 11 C) 10 D) 12 19 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 10 yoki 50 B) 10 C) 2 yoki 50 D) 50 20 / 30 sistemadan x+y ning qiymatini toping. A) 12 B) -12 C) 6 D) 35/4 21 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakning perimetri 48 va aylana radiusi 7 ga teng bo‘lsa, u holda kesma uzunligini toping A) 30 B) 15 C) 12 D) 25 22 / 30 bo’lsa, ni x orqali ifodalang. A) 25/x B) x/25 C) 2-x D) 2/x 23 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 6 B) 8 C) 5 D) 4 24 / 30 Agar f(x)=ax3-5x2+b va bo’lsa, a ni toping. A) 2 B) 0 C) 1 D) 3 25 / 30 Sin9x =4sin3x tenglamani yeching A) π/2+πn, n€Ζ B) πn, n€Ζ C) πn/3, n€Ζ D) π/3+πn, n€Ζ 26 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²(1-2sinα/4sin²) B) πa²(1+2cosα/4sin²) C) πa²/4sin²α D) πa²/4cos²α 27 / 30 Bir vaqtning o’zida 9,13, . . . ,405 va 15,21, . . . ,255 ketma–ketliklarning hadlari bo’lgan sonlarning eng kattasi va eng kichigining ayirmasini toping A) 150 B) 231 C) 147 D) 228 28 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) o’tkir burchakli uchburchak B) to’gri burchakli uchburchak C) teng tomonli uchburchak D) o’tmas burchakli uchburchak 29 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4716 B) 4720 C) 4760 D) 4680 30 / 30 Bog’bon uch kun davomida o’nta daraxt ko’chati o’tqazishi lozim. Agar bog’bon bir kunda eng kamida bitta ko’chat o’tqazadigan bo’lsa, u shu ishni kunlar bo’yicha necha xil usul bilan taqsimlashi mumkin? A) 32 B) 36 C) 25 D) 30 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz