Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 154 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 222220175 B) 2222222175 C) 22222222220 D) 222222222222 2 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 3√3+1/5 B) 2√2/3 C) 5√3+3/3 D) 3√2+2/4 3 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 60° B) 90° C) 30° D) 72° 4 / 30 To’g’ri burchakli uchburchakning yuzi 24 ga, katetlaridan biri 6 ga teng bo’lsa, gipotenuzasini toping A) 11 B) 10 C) √46 D) 12 5 / 30 A) 2 B) 3 C) 5 D) 1 6 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) 4 B) 2√2 C) √2 D) 2 7 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 9 B) 11 C) 12 D) 10 8 / 30 Ag ar tgα=2 bo’lsa, u holda ni hisoblang A) -10/3 B) 10/27 C) -10/27 D) 10/3 9 / 30 Radiusi 25 bo’lgan doirada 48 ga teng vatar o’tkazilgan. Doira markazidan shu vatargacha masofani toping. A) 9 B) 8 C) 7 D) 10 10 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) 64√2π/3 B) 3√2π/4 C) (5√3+3)π/3 D) 8√2π/5 11 / 30 funktsiyaning aniqlanish sohasini toping. A) (-∞;1]v[2;∞) B) (-∞;1)v(2;∞) C) (1;2) D) [1;2] 12 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 47 B) 60 C) 120 D) 18 13 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 13 ga, katetlaridan biri 52 ga teng. Gipotenuzaga tushirilgan balandlik uzunligini toping A) 7 B) 5 C) 6 D) 4 14 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusidan katta bo’lgan uchburchaklar sonini toping. A) cheksiz ko’p B) 0 C) 1 D) 2019 15 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 4π/3 B) 3π/2 C) 2π/3 D) 3π/4 16 / 30 n ning qanday qiymatida ushbu 81 .82 .83 .….8n=51222 tenglik o’rinli bo’ladi? A) 11 B) 10 C) 14 D) 12 17 / 30 Rasmda ko‘rsatilgan ko‘pyoqlardan qaysi birida 4 ta yoq, 6 ta qirra bor? A) 2 B) 1, 3 C) 3 D) 1, 2 18 / 30 Tomoni 2 ga teng kvadratga tashqi chizilgan aylana uzunligini toping. A) 3π B) 4π C) 2π D) 2π/3 19 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 2000 B) 2200 C) 2100 D) 1900 20 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4716 B) 4680 C) 4720 D) 4760 21 / 30 y=cos(2sinx) funksiyaning qiymatlar sohasini toping. A) [-1;1] B) [cos2;1] C) [0;1] D) [0;cos2] 22 / 30 To’g’ri to’rtburchakning perimetri 50 ga teng. Bir tomoni boshqa tomonidan 5 ga ko’p. To’g’ri to’rtburchakning yuzini toping. A) 225 B) 60 C) 50 D) 150 23 / 30 Qaysi javobda faqat juft funksiyalar ko’rsatilgan? A) 1,4 B) 1, 3 C) 2, 3 D) 3, 4 24 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 1; 2; 1,5; 1,2 ga teng bo’ladigan barcha to’g’ri to’rtburchaklar sonini toping A) 2 B) cheksiz ko’p C) 0 D) 1 25 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) 2 B) √2 C) 1 D) √3 26 / 30 tenglamani yeching. A) 2017 B) 2019 C) 0 D) 2018 27 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 8 B) 6 C) 4 D) 5 28 / 30 tenglamalar sistemasini yeching A) (-4;4) B) (4;4) C) (-4;-4) D) (4;–4) 29 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²/4sin²α B) πa²(1+2cosα/4sin²) C) πa²(1-2sinα/4sin²) D) πa²/4cos²α 30 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (4; -3) B) (-7;-1) C) (7; 1) D) (-7; 1) 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz