Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 141 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 7 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 tenglamalar sistemasini yeching A) (4;3) B) (3;–4) C) (4;–3) D) (–4;3) 2 / 30 Quyidagi va to’g’ri chiziqlarning o’zaro holatini aniqlang. A) o’zaro kesishadi B) o’zaro perpendikulyar C) ayqash to’gri chiziqlar D) o’zaro parallel 3 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 4 B) 1 C) 3 D) 2 4 / 30 n ning qanday qiymatida ushbu 81 .82 .83 .….8n=51222 tenglik o’rinli bo’ladi? A) 11 B) 14 C) 12 D) 10 5 / 30 Hisoblang. A) 15/34 B) 2/34 C) 17/34 D) 2/17 6 / 30 sin2x-cos2x=1 tenglama [-π; 2π] oraliqda nechta ildizga ega? A) 7 B) 9 C) 10 D) 6 7 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 11 B) 10 C) 12 D) 9 8 / 30 Hisoblang A) √3/2 B) √3 C) 2 D) 1/2 9 / 30 Tenglamani yeching. |x2-11x+10|=x2-11x+10 A) [10;∞) B) (-∞;1]v[10;∞) C) 1; 10 D) (-∞;1] 10 / 30 Soddalashtiring. A) 2018 B) 2019 C) 2018a/a+1 D) a+1 11 / 30 m ning qanday eng katta butun qiymatida y=2x-mx-5+m funksiyaning grafigi 1,3,4 –choraklarda yotadi? A) 1 B) 2 C) 3 D) 5 12 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) -4sin2x*cos(2cos2x) B) 4sin2x*cos(cos2x) C) 4sin2x*cos(2cos2x) D) -4sin2x*cos(cos2x) 13 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5, 6 ga teng bo’lsa, u holda AB tomon uzunligini toping. A) √37 B) bunday to’gri to’rtburchak mavjud emas C) 2 D) √7 14 / 30 bo’lsa ni toping. Bunda funksiya f(x) ga teskari funksiya. A) -10 B) -4 C) -12 D) -14 15 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 3π/2 B) 2π/3 C) 3π/4 D) 4π/3 16 / 30 Ushbu funksiyaning boshlang’ich funksiyasini toping. A) ln|x+4/x-1|+c B) ln(|x+4+|x-1|)+c C) ln|x-1/x+4|+c D) ln(|x+4*|x-1|)+c 17 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²/4cos²α B) πa²(1+2cosα/4sin²) C) πa²/4sin²α D) πa²(1-2sinα/4sin²) 18 / 30 y= funktsiyaning aniqlanish sohasini toping. A) (-∞;2)v(2;∞) B) (2;∞) C) (-∞;2) D) [2;∞) 19 / 30 Soat 3:37 bo’lganda minut va soat millari orasidagi burchakni toping. A) 112,5° B) 100° C) 113,5° D) 113° 20 / 30 To‘g‘ri to‘rtburchakning eni 25% ga orttirildi, bo‘yi esa 25% ga kamaytirildi. Natijada uning yuzi qanday o‘zgardi? A) o‘zgarmaydi B) 6,25% ga ortadi C) 6,25% ga kamayadi D) 2,5% ga ortadi 21 / 30 Radiusi 25 bo’lgan doirada 48 ga teng vatar o’tkazilgan. Doira markazidan shu vatargacha masofani toping. A) 8 B) 10 C) 7 D) 9 22 / 30 a(x+2)=2x+1 tenglama a ning qanday qiymatida yechimga ega emas? A) (∞;∞) B) (2;∞) C) (-∞;2)v(2;∞) D) (-∞;2) 23 / 30 ABC muntazam uchburchak ichidan ixtiyoriy P nuqta olinib, undan BC, CA va AB tomonlarga mos ravishda PD, PE va PF perpendikulyarlar tushirilgan bo’lsa,ni toping. A) 1 B) 0,5 C) 1/√3 D) 1/√2 24 / 30 sistema a ning qanday qiymatida cheksiz ko’p yechimga ega? A) (2;∞) B) (-∞;6])v[6;∞) C) (-∞;6) D) 6 25 / 30 Quyidagi 2x-y+3z=2018 va x+5y+z=2019 tekisliklarning holatini aniqlang. A) ayqash B) o’zaro parallel C) aniqlab bo’lmaydi D) o’zaro perpendikulyar 26 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 13 ga, katetlaridan biri 52 ga teng. Gipotenuzaga tushirilgan balandlik uzunligini toping A) 7 B) 4 C) 6 D) 5 27 / 30 Tenglamani yeching. (x+2)+(x+4)+(x+6)+…+(x+100)=2800 A) 3 B) 5 C) 4 D) 7 28 / 30 integralning qiymatini toping. A) π/2 B) 0 C) π/4 D) -π/2 29 / 30 Agar arctga+ arctgb + arctgc= bo’lsa, a+b+c ni toping. A) ab/c B) ab C) 1 D) abc 30 / 30 Bir vaqtning o’zida 9,13, . . . ,405 va 15,21, . . . ,255 ketma–ketliklarning hadlari bo’lgan sonlarning eng kattasi va eng kichigining ayirmasini toping A) 228 B) 147 C) 150 D) 231 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz