Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 121 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 1 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Tengsizlik nechta butun yechimga ega? A) 1 B) cheksiz ko’p C) 4 D) 3 2 / 30 Sin9x =4sin3x tenglamani yeching A) π/3+πn, n€Ζ B) π/2+πn, n€Ζ C) πn, n€Ζ D) πn/3, n€Ζ 3 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) o’tkir burchakli uchburchak B) teng tomonli uchburchak C) o’tmas burchakli uchburchak D) to’gri burchakli uchburchak 4 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) 4 B) 2√2 C) √2 D) 2 5 / 30 ifodaning qiymatini toping. A) 0,5 B) 0 C) -0,5 D) -2 6 / 30 Soddalashtiring. A) a+1 B) 2018a/a+1 C) 2019 D) 2018 7 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) lg(ln x) B) lg(lg x) C) ln(ln x) D) ln(lg x) 8 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 4 B) 8 C) 6 D) 5 9 / 30 Radiuslari orasidagi burchagi 36o va radiusi 5 ga teng bo`lgan sektor yoyining uzunligini toping. A) 2π B) π C) 2π/3 D) π/2 10 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusidan katta bo’lgan uchburchaklar sonini toping. A) 0 B) 1 C) cheksiz ko’p D) 2019 11 / 30 n ning qanday qiymatida ushbu 81 .82 .83 .….8n=51222 tenglik o’rinli bo’ladi? A) 14 B) 10 C) 12 D) 11 12 / 30 Tengsizlikni yeching. A) (-3;2)v(2;4) B) (-3;2) C) (2;4) D) (-4;2)v(2;3) 13 / 30 Tenglamani yeching. (x+2)+(x+4)+(x+6)+…+(x+100)=2800 A) 7 B) 5 C) 3 D) 4 14 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²(1-2sinα/4sin²) B) πa²/4cos²α C) πa²(1+2cosα/4sin²) D) πa²/4sin²α 15 / 30 Tenglamaning ildizlari yig`indisini toping. A) 3 B) 6 C) 5 D) 4 16 / 30 a(x+2)=2x+1 tenglama a ning qanday qiymatida yechimga ega emas? A) (-∞;2) B) (2;∞) C) (∞;∞) D) (-∞;2)v(2;∞) 17 / 30 Hisoblang A) -1 B) 2 C) 0 D) 1 18 / 30 Soddalashtiring. (0<m<7) A) 2m-7 B) 7-2m C) m D) 7 19 / 30 Agar f(x)=ax3-5x2+b va bo’lsa, a ni toping. A) 0 B) 1 C) 2 D) 3 20 / 30 Anvar tub son o’yladi va o’ylagan sonini 5 ga ko’paytirib, 8 ni ayirgan edi, yana tub son hosil bo’ldi. Anvar qanday son o’ylagan? A) 2 B) 412967 C) aniqlab bo’lmaydi D) 374389 21 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakning perimetri 48 va aylana radiusi 7 ga teng bo‘lsa, u holda kesma uzunligini toping A) 15 B) 12 C) 25 D) 30 22 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5, 6 ga teng bo’lsa, u holda AB tomon uzunligini toping. A) bunday to’gri to’rtburchak mavjud emas B) √7 C) √37 D) 2 23 / 30 Tenglamaning nechta ildizi bor? |x+1|=|2x-1| A) 1 B) 3 C) 4 D) 2 24 / 30 m ning qanday eng katta butun qiymatida y=2x-mx-5+m funksiyaning grafigi 1,3,4 –choraklarda yotadi? A) 3 B) 1 C) 5 D) 2 25 / 30 Quyidagilardan qaysi biri barcha lar uchun ma’noga ega (aniqlangan)? A) 4k+1/1/8:7-1/56 B) ²ᴷ⁺⁴v2k+1/k²+1 C) ⁴ᴷ⁺³√-√2k+1 D) (512-1/2⁻⁹)° 26 / 30 Parallelogrammning tomonlari nisbati 3:5 kabi. Agar parallelogrmmning perimetri 48 ga burchaklaridan biri 1200 ga teng bo’lsa, uning yuzini toping. A) 67,5√3 B) 135√3/4 C) 67,5 D) 48√3 27 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 2 yoki 50 B) 10 C) 50 D) 10 yoki 50 28 / 30 tenglamani yeching. A) 2018 B) 2017 C) 2019 D) 0 29 / 30 sistema yagona yechimga ega bo’ladigan a ning barcha qiymatlari to’plamini toping. A) {-1;3} B) {1;2} C) {2;4} D) {-1;2} 30 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) -4sin2x*cos(2cos2x) B) 4sin2x*cos(2cos2x) C) -4sin2x*cos(cos2x) D) 4sin2x*cos(cos2x) 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz