Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 148 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 x(t)=t2+6t+5 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakat boshlangandan necha sekund o’tgach boshlang’ich nuqtaga nisbatan 77 metr masofaga siljiydi? A) 8 B) 10 C) 7 D) 6 2 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 2 yoki 50 B) 50 C) 10 yoki 50 D) 10 3 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 1; 2; 1,5; 1,2 ga teng bo’ladigan barcha to’g’ri to’rtburchaklar sonini toping A) 0 B) 2 C) cheksiz ko’p D) 1 4 / 30 a(x+2)=2x+1 tenglama a ning qanday qiymatida yechimga ega emas? A) (-∞;2) B) (-∞;2)v(2;∞) C) (∞;∞) D) (2;∞) 5 / 30 Hisoblang A) 1 B) √3 C) 3√3 D) 2√3 6 / 30 Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY uchburchak qanday uchburchak bo‘ladi? A) to`g`ri burchakli uchburchak B) muntazam uchburchak C) ixtiyoriy uchburchak D) teng yonli uchburchak 7 / 30 |x2-5x-14|+20≥5|x+2|+4|x-7| tengsizlikni yeching. A) [2;4]v{2}v[3;∞) B) [-2;4]v{6} C) (-∞;-6]v{2}v[12;∞) D) [1;6] 8 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) 3√2π/4 B) 64√2π/3 C) 8√2π/5 D) (5√3+3)π/3 9 / 30 y= funktsiyaning aniqlanish sohasini toping. A) [2;∞) B) (2;∞) C) (-∞;2)v(2;∞) D) (-∞;2) 10 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) √5/2 B) 1 C) 1,5 D) √3/2 11 / 30 sistema a ning qanday qiymatida cheksiz ko’p yechimga ega? A) (2;∞) B) (-∞;6])v[6;∞) C) (-∞;6) D) 6 12 / 30 x2-5|x|-6=0 tenglama ildizini toping A) -1;-6 B) ±;±6 C) ±6 D) -1;6 13 / 30 sonning oxirgi raqamini toping. A) 4 B) 2 C) 6 D) 8 14 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 4 B) 5 C) 6 D) 8 15 / 30 Tenglamani yeching. |x2-11x+10|=x2-11x+10 A) [10;∞) B) (-∞;1] C) 1; 10 D) (-∞;1]v[10;∞) 16 / 30 Rasmda ko‘rsatilgan ko‘pyoqlardan qaysi birida 4 ta yoq, 6 ta qirra bor? A) 3 B) 2 C) 1, 2 D) 1, 3 17 / 30 Tomoni 6 ga teng bo`lgan teng tomonli uchburchakga tashqi chizilgan doiraning yuzini toping. A) 7 π B) 12π C) 10 π D) 6 π 18 / 30 200 kishidan iborat turistlar guruxida 140 kishi ingliz tilini, 90 kishi nemis tilini va 46 kishi ikkala tilni biladi. Ikkala tilni xam bilmaydigan turistlar necha foizni tashkil qiladi. A) 16 B) 8 C) 4 D) 12 19 / 30 Soat 3:37 bo’lganda minut va soat millari orasidagi burchakni toping. A) 100° B) 112,5° C) 113,5° D) 113° 20 / 30 funksiya uchun quyidagi mulohazalardan qaysi biri o’rinli? A) toq funksiya B) juft ham emas, toq ham emas funksiya C) bunday funksiya mavjud emas D) juft funksiya 21 / 30 Tomoni 12 ga teng bo`lgan teng tomonli uchburchakga ichki chizilgan aylana uzunligini toping. A) 3π B) 2√3π C) 12π D) 4√3π 22 / 30 tenglamani yeching. A) 2019 B) 0 C) 2017 D) 2018 23 / 30 Tenglamani yeching. (x+2)+(x+4)+(x+6)+…+(x+100)=2800 A) 4 B) 7 C) 3 D) 5 24 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 2π/3 B) 4π/3 C) 3π/4 D) 3π/2 25 / 30 To’rtburchakli muntazam piramidaning yon qirrasidagi ikki yoqli burchak 120 ga teng. Diagonal kesimining yuzasi S ga teng bo’lsa, uning yon sirtini toping. A) 0,5S B) 3S C) 2S D) 4S 26 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 222220175 B) 222222222222 C) 22222222220 D) 2222222175 27 / 30 y=cos(2sinx) funksiyaning qiymatlar sohasini toping. A) [0;1] B) [cos2;1] C) [-1;1] D) [0;cos2] 28 / 30 integralning qiymatini toping. A) 0 B) -π/2 C) π/2 D) π/4 29 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) √2 B) 1 C) 2 D) √3 30 / 30 Agar bank qo`yilgan pulga 40% yillik foyda bersa, qo`yilgan 5000 so`m pul bir yildan keyin qancha bo`ladi ? A) 6200 B) 6900 C) 7200 D) 7000 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz