Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 144 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 7 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 x(t)=t2+6t+5 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakat boshlangandan necha sekund o’tgach boshlang’ich nuqtaga nisbatan 77 metr masofaga siljiydi? A) 6 B) 10 C) 8 D) 7 2 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5, 6 ga teng bo’lsa, u holda AB tomon uzunligini toping. A) bunday to’gri to’rtburchak mavjud emas B) √7 C) 2 D) √37 3 / 30 Teng yonli trpetsiyaning asoslari 15 va 25 ga balandligi esa 15 ga teng trapetsiyaning dioganalini toping A) 30 B) 28 C) 20 D) 25 4 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) ln(ln x) B) ln(lg x) C) lg(lg x) D) lg(ln x) 5 / 30 A) 5 B) 2 C) 3 D) 1 6 / 30 (-3;4) nuqtaga absissa, ordinata o’qlariga va koordinata boshiga nisbatan simmetrik bo’lgan nuqtalarni tutashtirishdan hosil bo’lgan uchburchakning eng kata tomonini toping. A) 12 B) 10 C) 14 D) 24 7 / 30 Agar bank qo`yilgan pulga 40% yillik foyda bersa, qo`yilgan 5000 so`m pul bir yildan keyin qancha bo`ladi ? A) 6900 B) 7000 C) 7200 D) 6200 8 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4716 B) 4680 C) 4720 D) 4760 9 / 30 bo’lsa ni toping. Bunda funksiya f(x) ga teskari funksiya. A) -14 B) -12 C) -4 D) -10 10 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (4; -3) B) (7; 1) C) (-7;-1) D) (-7; 1) 11 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 4 B) 2 C) 1 D) 3 12 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 54 B) 108 C) 48√3 D) 52√3 13 / 30 y= funksiyaning aniqlanish sohasini toping A) (2;∞) B) (-∞;0])v[2;∞) C) (-∞;0)v(2;∞) D) (0,2) 14 / 30 Quyidagi 2x-y+3z=2018 va x+5y+z=2019 tekisliklarning holatini aniqlang. A) aniqlab bo’lmaydi B) o’zaro parallel C) o’zaro perpendikulyar D) ayqash 15 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) 64√2π/3 B) (5√3+3)π/3 C) 8√2π/5 D) 3√2π/4 16 / 30 7 sonini uchta natural sonlar yig’indisi ko’rinishida necha xil usulda yozish mumkin? A) 6 B) 4 C) 3 D) 5 17 / 30 x2-5|x|-6=0 tenglama ildizini toping A) -1;6 B) -1;-6 C) ±6 D) ±;±6 18 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 10 B) 10 yoki 50 C) 50 D) 2 yoki 50 19 / 30 n ning qanday qiymatida ushbu 81 .82 .83 .….8n=51222 tenglik o’rinli bo’ladi? A) 11 B) 14 C) 12 D) 10 20 / 30 Agar va b-a=4 bo’lsa, a+b ni toping. A) 4 B) 3,5 C) 2 D) 3 21 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 1; 2; 1,5; 1,2 ga teng bo’ladigan barcha to’g’ri to’rtburchaklar sonini toping A) 2 B) 1 C) cheksiz ko’p D) 0 22 / 30 Tomoni 12 ga teng bo`lgan teng tomonli uchburchakga ichki chizilgan aylana uzunligini toping. A) 4√3π B) 2√3π C) 3π D) 12π 23 / 30 funktsiyaning aniqlanish sohasini toping. A) (-∞;1]v[2;∞) B) (-∞;1)v(2;∞) C) [1;2] D) (1;2) 24 / 30 Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY uchburchak qanday uchburchak bo‘ladi? A) muntazam uchburchak B) teng yonli uchburchak C) to`g`ri burchakli uchburchak D) ixtiyoriy uchburchak 25 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 5 B) 4 C) 6 D) 8 26 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 3π/2 B) 4π/3 C) 3π/4 D) 2π/3 27 / 30 a=sin 1; b=sin 2; c=sin 3; d=sin 4 va e=sin 5 sonlarni kamayish tartibida joylashtiring. A) b>a>c>d>e B) b>c>a>d>e C) a>b>c>d>e D) e>b>a>d>c 28 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²/4cos²α B) πa²/4sin²α C) πa²(1-2sinα/4sin²) D) πa²(1+2cosα/4sin²) 29 / 30 Fazoda (1;2;3) nuqtalardan o’tuvchi to’g’ri chiziq tenglamasini tuzing. A) x-1/2=y-2/3=z-3/4 B) -x-y+z=0 C) x=y/3=z/2 D) 2x+3y+z=0 30 / 30 Ag ar tgα=2 bo’lsa, u holda ni hisoblang A) -10/27 B) 10/3 C) -10/3 D) 10/27 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz