Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 126 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 3 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) √2 B) 2√2 C) 2 D) 4 2 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 18 B) 60 C) 120 D) 47 3 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 2000 B) 2200 C) 2100 D) 1900 4 / 30 sistemada xy ning qiymatini toping. A) 75 B) 60 C) 64 D) 80 5 / 30 Teng yonli uchburchakning tomonlari 5, 5 va 6 ga teng. Bu uchburchakning bissektiritsalari va medianalari kesishgan nuqtalar A) 1,2 B) 1/6 C) 1/2 D) 1 6 / 30 Tengsizlikni yeching. A) (0;+∞) B) (-1/³ √2 ;0) C) to'g'ri javob yo'q D) 0 7 / 30 Soat 3:37 bo’lganda minut va soat millari orasidagi burchakni toping. A) 113,5° B) 100° C) 112,5° D) 113° 8 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 12 B) 10 C) 9 D) 11 9 / 30 Sin9x =4sin3x tenglamani yeching A) πn, n€Ζ B) π/2+πn, n€Ζ C) π/3+πn, n€Ζ D) πn/3, n€Ζ 10 / 30 Ostki asosining yuzi 32π va ustki asosining yuzi 18π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning sirtini toping. A) 100π B) 96π C) 56π D) 72π 11 / 30 tenglamalar sistemasini yeching A) (4;3) B) (4;–3) C) (–4;3) D) (3;–4) 12 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 38 B) 36 C) 32 D) 42 13 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping. A) 14 B) 18 C) 16 D) 17 14 / 30 Hisoblang A) 1 B) √3 C) 3√3 D) 2√3 15 / 30 Tenglamani yeching. |x2-11x+10|=x2-11x+10 A) [10;∞) B) (-∞;1]v[10;∞) C) (-∞;1] D) 1; 10 16 / 30 Radiuslari orasidagi burchagi 36o va radiusi 5 ga teng bo`lgan sektor yoyining uzunligini toping. A) 2π B) π/2 C) π D) 2π/3 17 / 30 Tengsizlikni yeching. A) (-3;2)v(2;4) B) (2;4) C) (-4;2)v(2;3) D) (-3;2) 18 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 4π/3 B) 2π/3 C) 3π/2 D) 3π/4 19 / 30 7 sonini uchta natural sonlar yig’indisi ko’rinishida necha xil usulda yozish mumkin? A) 3 B) 6 C) 5 D) 4 20 / 30 tenglamani yeching. A) 2018 B) 0 C) 2019 D) 2017 21 / 30 Agar sinx+cosx=a bo’lsa, ning qiymatini toping. A) 1/3 B) 1/2 C) 2/5 D) -1/2 22 / 30 Radiusi 25 bo’lgan doirada 48 ga teng vatar o’tkazilgan. Doira markazidan shu vatargacha masofani toping. A) 9 B) 10 C) 7 D) 8 23 / 30 Hisoblang. A) 15/34 B) 2/34 C) 2/17 D) 17/34 24 / 30 To’g’ri burchakli uchburchakning yuzi 24 ga, katetlaridan biri 6 ga teng bo’lsa, gipotenuzasini toping A) √46 B) 10 C) 12 D) 11 25 / 30 y= funktsiyaning aniqlanish sohasini toping. A) (-∞;2) B) [2;∞) C) (2;∞) D) (-∞;2)v(2;∞) 26 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) 4sin2x*cos(2cos2x) B) -4sin2x*cos(2cos2x) C) -4sin2x*cos(cos2x) D) 4sin2x*cos(cos2x) 27 / 30 Agar bank qo’yilgan pulga 40% yillik bersa, qo’yilgan 4500 so’m pul bir yildan so’ng qancha bo’ladi? A) 6200 B) 6000 C) 6300 D) 6100 28 / 30 a=sin 1; b=sin 2; c=sin 3; d=sin 4 va e=sin 5 sonlarni kamayish tartibida joylashtiring. A) b>a>c>d>e B) a>b>c>d>e C) e>b>a>d>c D) b>c>a>d>e 29 / 30 x2-5|x|-6=0 tenglama ildizini toping A) ±6 B) ±;±6 C) -1;-6 D) -1;6 30 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) lg(lg x) B) ln(ln x) C) lg(ln x) D) ln(lg x) 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz