Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 154 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 tenglamani yeching. A) 2017 B) 0 C) 2019 D) 2018 2 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 1; 2; 1,5; 1,2 ga teng bo’ladigan barcha to’g’ri to’rtburchaklar sonini toping A) 1 B) 2 C) 0 D) cheksiz ko’p 3 / 30 Bir vaqtning o’zida 9,13, . . . ,405 va 15,21, . . . ,255 ketma–ketliklarning hadlari bo’lgan sonlarning eng kattasi va eng kichigining ayirmasini toping A) 228 B) 147 C) 231 D) 150 4 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) -4sin2x*cos(cos2x) B) 4sin2x*cos(2cos2x) C) -4sin2x*cos(2cos2x) D) 4sin2x*cos(cos2x) 5 / 30 sistemada xy ning qiymatini toping. A) 60 B) 75 C) 80 D) 64 6 / 30 Quyidagilardan qaysi biri barcha lar uchun ma’noga ega (aniqlangan)? A) (512-1/2⁻⁹)° B) 4k+1/1/8:7-1/56 C) ⁴ᴷ⁺³√-√2k+1 D) ²ᴷ⁺⁴v2k+1/k²+1 7 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) √2 B) 1 C) √3 D) 2 8 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 120 B) 47 C) 18 D) 60 9 / 30 y=cos(2sinx) funksiyaning qiymatlar sohasini toping. A) [-1;1] B) [0;cos2] C) [0;1] D) [cos2;1] 10 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) 4 B) √2 C) 2√2 D) 2 11 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 2222222175 B) 222222222222 C) 22222222220 D) 222220175 12 / 30 Radiuslari orasidagi burchagi 36o va radiusi 5 ga teng bo`lgan sektor yoyining uzunligini toping. A) 2π/3 B) π/2 C) 2π D) π 13 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) √3/2 B) 1 C) 1,5 D) √5/2 14 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 10 B) 12 C) 9 D) 11 15 / 30 AA1A2A3A4A5A6 muntazam oltiburchakli piramidaning hajmi ga va balandligi 2 ga teng bo‘lsa, u holda AA2A6 kesim yuzini toping. A) √15 B) 3 C) 2 D) √5 16 / 30 Bog’bon uch kun davomida o’nta daraxt ko’chati o’tqazishi lozim. Agar bog’bon bir kunda eng kamida bitta ko’chat o’tqazadigan bo’lsa, u shu ishni kunlar bo’yicha necha xil usul bilan taqsimlashi mumkin? A) 36 B) 32 C) 25 D) 30 17 / 30 Tenglamaning ildizlari yig`indisini toping. A) 4 B) 5 C) 3 D) 6 18 / 30 Ushbu arifmetik progressiyaning manfiy hadlari yig’indisini toping. A) -1 B) -0,25 C) -0,75 D) -0,5 19 / 30 x2-5|x|-6=0 tenglama ildizini toping A) -1;6 B) -1;-6 C) ±6 D) ±;±6 20 / 30 To’g’ri burchakli uchburchakning yuzi 24 ga, katetlaridan biri 6 ga teng bo’lsa, gipotenuzasini toping A) 10 B) 12 C) √46 D) 11 21 / 30 n ning qanday qiymatida ushbu 81 .82 .83 .….8n=51222 tenglik o’rinli bo’ladi? A) 11 B) 14 C) 12 D) 10 22 / 30 Hisoblang: A) 2 B) 1 C) 3 D) -1 23 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 52 B) 48 C) 108 D) 54 24 / 30 Hisoblang. A) 2/17 B) 17/34 C) 2/34 D) 15/34 25 / 30 Tenglamani yeching. |x2-11x+10|=x2-11x+10 A) (-∞;1] B) [10;∞) C) 1; 10 D) (-∞;1]v[10;∞) 26 / 30 Agar bank qo`yilgan pulga 40% yillik foyda bersa, qo`yilgan 5000 so`m pul bir yildan keyin qancha bo`ladi ? A) 6200 B) 6900 C) 7000 D) 7200 27 / 30 “Tutgan balig‘ining og‘irligi qancha?” degan savolga baliqchi: “Baliqning dumi 3 kg, boshi uning dumi hamda tanasi yarmining og‘irligiga teng, tanasi esa boshi va dumining og‘irligiga teng”, deb javob berdi. Baliqning og‘irligini (kg) toping. A) 18 B) 3 C) 12 D) 6 28 / 30 Anvar tub son o’yladi va o’ylagan sonini 5 ga ko’paytirib, 8 ni ayirgan edi, yana tub son hosil bo’ldi. Anvar qanday son o’ylagan? A) 374389 B) 412967 C) aniqlab bo’lmaydi D) 2 29 / 30 tenglamalar sistemasini yeching A) (-4;4) B) (-4;-4) C) (4;–4) D) (4;4) 30 / 30 a ning qanday qiymatlarida ushbu 7x-a-13=(a-5)(x+7) tenglama yagona yechimga ega A) a≠12 B) a≠5 C) a=12 D) a ning bunday qiymati yo’q 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz