Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 164 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 2 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 ABC muntazam uchburchak ichidan ixtiyoriy P nuqta olinib, undan BC, CA va AB tomonlarga mos ravishda PD, PE va PF perpendikulyarlar tushirilgan bo’lsa,ni toping. A) 1/√2 B) 1/√3 C) 1 D) 0,5 2 / 30 Agar bank qo’yilgan pulga 40% yillik bersa, qo’yilgan 4500 so’m pul bir yildan so’ng qancha bo’ladi? A) 6300 B) 6200 C) 6100 D) 6000 3 / 30 (-3;4) nuqtaga absissa, ordinata o’qlariga va koordinata boshiga nisbatan simmetrik bo’lgan nuqtalarni tutashtirishdan hosil bo’lgan uchburchakning eng kata tomonini toping. A) 14 B) 10 C) 12 D) 24 4 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²(1-2sinα/4sin²) B) πa²(1+2cosα/4sin²) C) πa²/4cos²α D) πa²/4sin²α 5 / 30 Ushbu arifmetik progressiyaning manfiy hadlari yig’indisini toping. A) -0,75 B) -0,5 C) -1 D) -0,25 6 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) 2 B) √2 C) 1 D) √3 7 / 30 Radiusi 25 bo’lgan doirada 48 ga teng vatar o’tkazilgan. Doira markazidan shu vatargacha masofani toping. A) 7 B) 9 C) 8 D) 10 8 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) 64√2π/3 B) 3√2π/4 C) (5√3+3)π/3 D) 8√2π/5 9 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 42 B) 36 C) 32 D) 38 10 / 30 ifodaning qiymatini toping. A) 0 B) -2 C) 0,5 D) -0,5 11 / 30 sistemada xy ning qiymatini toping. A) 80 B) 64 C) 60 D) 75 12 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) teng tomonli uchburchak B) to’gri burchakli uchburchak C) o’tmas burchakli uchburchak D) o’tkir burchakli uchburchak 13 / 30 Tenglamaning nechta ildizi bor? |x+1|=|2x-1| A) 2 B) 4 C) 3 D) 1 14 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (7; 1) B) (-7; 1) C) (4; -3) D) (-7;-1) 15 / 30 Ushbu funksiyaning boshlang’ich funksiyasini toping. A) ln|x+4/x-1|+c B) ln(|x+4*|x-1|)+c C) ln(|x+4+|x-1|)+c D) ln|x-1/x+4|+c 16 / 30 Parallelogrammning tomonlari nisbati 3:5 kabi. Agar parallelogrmmning perimetri 48 ga burchaklaridan biri 1200 ga teng bo’lsa, uning yuzini toping. A) 67,5√3 B) 135√3/4 C) 67,5 D) 48√3 17 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 10 yoki 50 B) 10 C) 2 yoki 50 D) 50 18 / 30 Tengsizlik nechta butun yechimga ega? A) cheksiz ko’p B) 1 C) 4 D) 3 19 / 30 Qaysi javobda faqat juft funksiyalar ko’rsatilgan? A) 1, 3 B) 1,4 C) 3, 4 D) 2, 3 20 / 30 Ifodani soddalashtiring. 2 cos55o.cos40o.sin55o+cos110o.sin40o A) 0 B) 1 C) 0,5 D) 2 21 / 30 Muntazam uchburchakli piramidaning yon qirrasi asos tekisligi bilan 45o li burchak tashkil etgan bo‘lsa, u holda piramidaning yon sirti yuzining uning asosi yuziga nisbatini toping. A) 3√3 B) 4 C) 2√3 D) 2√5 22 / 30 Agar f(x)=ax3-5x2+b va bo’lsa, a ni toping. A) 1 B) 3 C) 2 D) 0 23 / 30 A) 1 B) 2 C) √6 D) 0 24 / 30 Agar funksiya berilgan bo’lsa, u holda M=ning qiymatini toping. A) e⁴⁹⁵⁰ B) e⁵⁰⁵⁰ C) e⁻⁴⁹⁵⁰ D) e⁻⁵⁰⁵⁰ 25 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 54 B) 108 C) 52 D) 48 26 / 30 Teng yonli uchburchakning tomonlari 5, 5 va 6 ga teng. Bu uchburchakning bissektiritsalari va medianalari kesishgan nuqtalar A) 1,2 B) 1 C) 1/6 D) 1/2 27 / 30 sistemadan x+y ning qiymatini toping. A) 35/4 B) 12 C) -12 D) 6 28 / 30 Fazoda (1;2;3) nuqtalardan o’tuvchi to’g’ri chiziq tenglamasini tuzing. A) x-1/2=y-2/3=z-3/4 B) -x-y+z=0 C) x=y/3=z/2 D) 2x+3y+z=0 29 / 30 sistema a ning qanday qiymatida cheksiz ko’p yechimga ega? A) (-∞;6])v[6;∞) B) 6 C) (-∞;6) D) (2;∞) 30 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 8 B) 4 C) 6 D) 5 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz