Matematika abituriyent testi №1

2
Tomonidan yaratilgan InfoMaster

Matematika abituriyentlar uchun №1

1 / 30

AA1A2A3A4A5A6 muntazam oltiburchakli piramidaning hajmi  ga va balandligi 2 ga teng bo‘lsa, u holda AA2A6 kesim yuzini toping.

2 / 30

Agar  f(x)=sin2x  va  g(x)=cos2x  bo’lsa, u holda  f(g(x)) funksiyaning hosilasini toping.

3 / 30

Ag ar tgα=2 bo’lsa, u holda   ni hisoblang

4 / 30

y=cos(2sinx) funksiyaning qiymatlar sohasini toping.

5 / 30

O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak  ga teng. Agar o’q kesimining diagonali  ga teng bo’lsa, kesik konus asosining yuzini toping.

 

6 / 30

sin2x-cos2x=1 tenglama [-π; 2π] oraliqda nechta ildizga ega?

7 / 30

Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999

8 / 30

Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ?

9 / 30

Radiusi 25 bo’lgan doirada 48 ga teng vatar o’tkazilgan. Doira markazidan shu vatargacha masofani toping.

10 / 30

Ifodani soddalashtiring.

2 cos55o.cos40o.sin55o+cos110o.sin40o

11 / 30

Ostki asosining yuzi 32π va ustki asosining yuzi 18π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning sirtini toping.

12 / 30

200 kishidan iborat turistlar guruxida 140 kishi ingliz tilini, 90 kishi nemis tilini va 46 kishi ikkala tilni biladi. Ikkala tilni xam bilmaydigan turistlar necha foizni tashkil qiladi.

13 / 30

To’rtburchakli muntazam piramidaning yon qirrasidagi ikki yoqli burchak 120  ga teng. Diagonal kesimining yuzasi S ga teng bo’lsa, uning yon sirtini toping.

14 / 30

x(t)=t2+6t+5 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakat boshlangandan necha sekund o’tgach boshlang’ich nuqtaga nisbatan 77 metr masofaga siljiydi?

15 / 30

Tenglamaning ildizlari yig’indisi va ko’paytmasining yig’indisini toping. |x+1|.|x-4|=5

16 / 30

Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping.

17 / 30

(-3;4) nuqtaga absissa, ordinata o’qlariga va koordinata boshiga nisbatan simmetrik bo’lgan nuqtalarni tutashtirishdan hosil bo’lgan uchburchakning eng kata tomonini toping.

18 / 30

Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va  B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY  uchburchak qanday uchburchak bo‘ladi?

19 / 30

Hisoblang:

20 / 30

Tenglamani yeching.

|x2-11x+10|=x2-11x+10

21 / 30

Agar bank qo`yilgan pulga 40% yillik foyda bersa, qo`yilgan 5000 so`m pul bir yildan keyin qancha bo`ladi ?

22 / 30

x(t)=t2+7t-6 qonuniyat bo’yicha harakatlanayotgan moddiy nuqtaning tezligi harakat boshlangandan necha sekund o’tgach 87 m/s ga teng bo’ladi?

23 / 30

sistemadan x+y+z ning qiymatini toping.

24 / 30

Sin9x =4sin3x tenglamani yeching

25 / 30

funktsiyaning aniqlanish sohasini toping.

26 / 30

27 / 30

Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping.

28 / 30

y=  funktsiyaning aniqlanish sohasini toping.

29 / 30

Agar sinx+cosx=a   bo’lsa, ning qiymatini toping.

30 / 30

0%

Baholash mezoni

To'g'ri javob uchun 3,1 ball.

InfoMaster
Author: InfoMaster

Foydali bo'lsa mamnunmiz

1 Izoh

Javob qoldiring

Info-Master.uz
Logo
Elementlarni Solishtiring
  • Jami (0)
Solishtiring
0