Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 138 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 5 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 54 B) 52 C) 48 D) 108 2 / 30 Agar bank qo`yilgan pulga 40% yillik foyda bersa, qo`yilgan 5000 so`m pul bir yildan keyin qancha bo`ladi ? A) 6200 B) 6900 C) 7200 D) 7000 3 / 30 Quyidagi va to’g’ri chiziqlarning o’zaro holatini aniqlang. A) o’zaro perpendikulyar B) o’zaro kesishadi C) ayqash to’gri chiziqlar D) o’zaro parallel 4 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 4 B) 8 C) 5 D) 6 5 / 30 Hisoblang. A) 17/34 B) 15/34 C) 2/34 D) 2/17 6 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping. A) 14 B) 16 C) 18 D) 17 7 / 30 ABCD kvadrat ichidan olingan O nuqtadan A, B, C uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5 ga teng bo’lsa, u holda OD kesma uzunligini toping. A) 3 B) √37 C) 6 D) √32 8 / 30 Agar bank qo’yilgan pulga 40% yillik bersa, qo’yilgan 4500 so’m pul bir yildan so’ng qancha bo’ladi? A) 6100 B) 6200 C) 6000 D) 6300 9 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (-7;-1) B) (-7; 1) C) (7; 1) D) (4; -3) 10 / 30 sistema a ning qanday qiymatida cheksiz ko’p yechimga ega? A) (-∞;6) B) 6 C) (2;∞) D) (-∞;6])v[6;∞) 11 / 30 Ag ar tgα=2 bo’lsa, u holda ni hisoblang A) -10/27 B) 10/3 C) -10/3 D) 10/27 12 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 42 B) 32 C) 36 D) 38 13 / 30 To’g’ri burchakli uchburchakning yuzi 24 ga, katetlaridan biri 6 ga teng bo’lsa, gipotenuzasini toping A) 11 B) 12 C) 10 D) √46 14 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 9 B) 10 C) 11 D) 12 15 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²/4sin²α B) πa²(1-2sinα/4sin²) C) πa²(1+2cosα/4sin²) D) πa²/4cos²α 16 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 13 ga, katetlaridan biri 52 ga teng. Gipotenuzaga tushirilgan balandlik uzunligini toping A) 5 B) 4 C) 7 D) 6 17 / 30 Tomoni 2 ga teng kvadratga tashqi chizilgan aylana uzunligini toping. A) 2π/3 B) 2π C) 4π D) 3π 18 / 30 y=cos(2sinx) funksiyaning qiymatlar sohasini toping. A) [0;cos2] B) [-1;1] C) [cos2;1] D) [0;1] 19 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) 2√2 B) √2 C) 2 D) 4 20 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 60° B) 72° C) 90° D) 30° 21 / 30 A) 3 B) 1 C) 2 D) 5 22 / 30 tenglamani yeching. A) 0 B) 2018 C) 2019 D) 2017 23 / 30 Agar f(x)=ax3-5x2+b va bo’lsa, a ni toping. A) 0 B) 1 C) 2 D) 3 24 / 30 AA1A2A3A4A5A6 muntazam oltiburchakli piramidaning hajmi ga va balandligi 2 ga teng bo‘lsa, u holda AA2A6 kesim yuzini toping. A) √5 B) √15 C) 2 D) 3 25 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 1900 B) 2100 C) 2000 D) 2200 26 / 30 Hisoblang A) 0 B) 2 C) -1 D) 1 27 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) 3√2π/4 B) 64√2π/3 C) (5√3+3)π/3 D) 8√2π/5 28 / 30 Radiusi 25 bo’lgan doirada 48 ga teng vatar o’tkazilgan. Doira markazidan shu vatargacha masofani toping. A) 7 B) 8 C) 9 D) 10 29 / 30 Agar f(x)=4x3-6x2-2x+3x .log3e bo’lsa, u holda ni toping. A) 1 B) e C) 3e D) √2e 30 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) √3/2 B) √5/2 C) 1,5 D) 1 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz