Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 154 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 sonning oxirgi raqamini toping. A) 2 B) 6 C) 8 D) 4 2 / 30 (-3;4) nuqtaga absissa, ordinata o’qlariga va koordinata boshiga nisbatan simmetrik bo’lgan nuqtalarni tutashtirishdan hosil bo’lgan uchburchakning eng kata tomonini toping. A) 10 B) 12 C) 24 D) 14 3 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 38 B) 36 C) 32 D) 42 4 / 30 funksiya uchun quyidagi mulohazalardan qaysi biri o’rinli? A) bunday funksiya mavjud emas B) juft ham emas, toq ham emas funksiya C) toq funksiya D) juft funksiya 5 / 30 tenglamalar sistemasini yeching A) (–4;3) B) (4;3) C) (4;–3) D) (3;–4) 6 / 30 Radiusi 25 bo’lgan doirada 48 ga teng vatar o’tkazilgan. Doira markazidan shu vatargacha masofani toping. A) 10 B) 7 C) 8 D) 9 7 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 5 B) 8 C) 4 D) 6 8 / 30 Quyidagi va to’g’ri chiziqlarning o’zaro holatini aniqlang. A) o’zaro parallel B) ayqash to’gri chiziqlar C) o’zaro kesishadi D) o’zaro perpendikulyar 9 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 4 B) 3 C) 2 D) 1 10 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 13 ga, katetlaridan biri 52 ga teng. Gipotenuzaga tushirilgan balandlik uzunligini toping A) 6 B) 4 C) 5 D) 7 11 / 30 Muntazam uchburchakli piramidaning yon qirrasi asos tekisligi bilan 45o li burchak tashkil etgan bo‘lsa, u holda piramidaning yon sirti yuzining uning asosi yuziga nisbatini toping. A) 2√5 B) 3√3 C) 4 D) 2√3 12 / 30 Hisoblang: A) 3 B) 1 C) -1 D) 2 13 / 30 200 kishidan iborat turistlar guruxida 140 kishi ingliz tilini, 90 kishi nemis tilini va 46 kishi ikkala tilni biladi. Ikkala tilni xam bilmaydigan turistlar necha foizni tashkil qiladi. A) 16 B) 12 C) 8 D) 4 14 / 30 a(x+2)=2x+1 tenglama a ning qanday qiymatida yechimga ega emas? A) (∞;∞) B) (-∞;2) C) (-∞;2)v(2;∞) D) (2;∞) 15 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4720 B) 4680 C) 4716 D) 4760 16 / 30 Anvar tub son o’yladi va o’ylagan sonini 5 ga ko’paytirib, 8 ni ayirgan edi, yana tub son hosil bo’ldi. Anvar qanday son o’ylagan? A) aniqlab bo’lmaydi B) 412967 C) 374389 D) 2 17 / 30 sin2x-cos2x=1 tenglama [-π; 2π] oraliqda nechta ildizga ega? A) 10 B) 7 C) 9 D) 6 18 / 30 n ning qanday qiymatida ushbu 81 .82 .83 .….8n=51222 tenglik o’rinli bo’ladi? A) 11 B) 10 C) 12 D) 14 19 / 30 AA1A2A3A4A5A6 muntazam oltiburchakli piramidaning hajmi ga va balandligi 2 ga teng bo‘lsa, u holda AA2A6 kesim yuzini toping. A) √15 B) √5 C) 2 D) 3 20 / 30 ifodaning qiymatini toping. A) 0 B) 0,5 C) -0,5 D) -2 21 / 30 y= funktsiyaning aniqlanish sohasini toping. A) (-∞;2) B) (-∞;2)v(2;∞) C) [2;∞) D) (2;∞) 22 / 30 A) 1 B) √6 C) 0 D) 2 23 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) 4 B) √2 C) 2 D) 2√2 24 / 30 |x2-5x-14|+20≥5|x+2|+4|x-7| tengsizlikni yeching. A) [1;6] B) (-∞;-6]v{2}v[12;∞) C) [-2;4]v{6} D) [2;4]v{2}v[3;∞) 25 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) teng tomonli uchburchak B) to’gri burchakli uchburchak C) o’tkir burchakli uchburchak D) o’tmas burchakli uchburchak 26 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 11 B) 10 C) 12 D) 9 27 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) 4sin2x*cos(2cos2x) B) 4sin2x*cos(cos2x) C) -4sin2x*cos(cos2x) D) -4sin2x*cos(2cos2x) 28 / 30 sistema a ning qanday qiymatida cheksiz ko’p yechimga ega? A) (-∞;6) B) (2;∞) C) (-∞;6])v[6;∞) D) 6 29 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) √3 B) 1 C) 2 D) √2 30 / 30 bo’lsa, ni x orqali ifodalang. A) x/25 B) 2-x C) 25/x D) 2/x 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz