Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 153 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) 3√2π/4 B) 64√2π/3 C) 8√2π/5 D) (5√3+3)π/3 2 / 30 sonning oxirgi raqamini toping. A) 8 B) 2 C) 4 D) 6 3 / 30 bo’lsa ni toping. Bunda funksiya f(x) ga teskari funksiya. A) -10 B) -14 C) -4 D) -12 4 / 30 Muntazam uchburchakli piramidaning yon qirrasi asos tekisligi bilan 45o li burchak tashkil etgan bo‘lsa, u holda piramidaning yon sirti yuzining uning asosi yuziga nisbatini toping. A) 3√3 B) 2√3 C) 2√5 D) 4 5 / 30 x(t)=t2+7t-6 qonuniyat bo’yicha harakatlanayotgan moddiy nuqtaning tezligi harakat boshlangandan necha sekund o’tgach 87 m/s ga teng bo’ladi? A) 40 B) 36 C) 50 D) 54 6 / 30 Tenglamaning nechta ildizi bor? |x+1|=|2x-1| A) 4 B) 3 C) 2 D) 1 7 / 30 Hisoblang A) √3/2 B) 2 C) √3 D) 1/2 8 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 42 B) 36 C) 38 D) 32 9 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 2200 B) 1900 C) 2100 D) 2000 10 / 30 Soddalashtiring. (0<m<7) A) 2m-7 B) 7-2m C) 7 D) m 11 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (7; 1) B) (4; -3) C) (-7;-1) D) (-7; 1) 12 / 30 A) 2 B) 0 C) √6 D) 1 13 / 30 m ning qanday eng katta butun qiymatida y=2x-mx-5+m funksiyaning grafigi 1,3,4 –choraklarda yotadi? A) 5 B) 1 C) 3 D) 2 14 / 30 Ag ar tgα=2 bo’lsa, u holda ni hisoblang A) 10/3 B) -10/3 C) -10/27 D) 10/27 15 / 30 A) 2 B) 3 C) 5 D) 1 16 / 30 sistemada xy ning qiymatini toping. A) 75 B) 80 C) 64 D) 60 17 / 30 a(x+2)=2x+1 tenglama a ning qanday qiymatida yechimga ega emas? A) (2;∞) B) (-∞;2) C) (-∞;2)v(2;∞) D) (∞;∞) 18 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 4π/3 B) 3π/4 C) 3π/2 D) 2π/3 19 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) √2 B) √3 C) 2 D) 1 20 / 30 Radiusi 25 bo’lgan doirada 48 ga teng vatar o’tkazilgan. Doira markazidan shu vatargacha masofani toping. A) 7 B) 10 C) 9 D) 8 21 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) 4sin2x*cos(2cos2x) B) -4sin2x*cos(2cos2x) C) -4sin2x*cos(cos2x) D) 4sin2x*cos(cos2x) 22 / 30 To’rtburchakli muntazam piramidaning yon qirrasidagi ikki yoqli burchak 120 ga teng. Diagonal kesimining yuzasi S ga teng bo’lsa, uning yon sirtini toping. A) 3S B) 0,5S C) 4S D) 2S 23 / 30 y= funktsiyaning aniqlanish sohasini toping. A) [2;∞) B) (2;∞) C) (-∞;2) D) (-∞;2)v(2;∞) 24 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 1 B) 2 C) 4 D) 3 25 / 30 sistema yagona yechimga ega bo’ladigan a ning barcha qiymatlari to’plamini toping. A) {-1;2} B) {2;4} C) {-1;3} D) {1;2} 26 / 30 x2-5|x|-6=0 tenglama ildizini toping A) -1;-6 B) ±6 C) ±;±6 D) -1;6 27 / 30 Ifodani soddalashtiring. 2 cos55o.cos40o.sin55o+cos110o.sin40o A) 0,5 B) 1 C) 2 D) 0 28 / 30 “Tutgan balig‘ining og‘irligi qancha?” degan savolga baliqchi: “Baliqning dumi 3 kg, boshi uning dumi hamda tanasi yarmining og‘irligiga teng, tanasi esa boshi va dumining og‘irligiga teng”, deb javob berdi. Baliqning og‘irligini (kg) toping. A) 18 B) 3 C) 6 D) 12 29 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 72° B) 60° C) 30° D) 90° 30 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) to’gri burchakli uchburchak B) o’tkir burchakli uchburchak C) o’tmas burchakli uchburchak D) teng tomonli uchburchak 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz