Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 160 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 2 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Tomoni 2 ga teng kvadratga tashqi chizilgan aylana uzunligini toping. A) 2π/3 B) 3π C) 4π D) 2π 2 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 2 B) 4 C) 3 D) 1 3 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) -4sin2x*cos(2cos2x) B) 4sin2x*cos(cos2x) C) 4sin2x*cos(2cos2x) D) -4sin2x*cos(cos2x) 4 / 30 Agar bank qo’yilgan pulga 40% yillik bersa, qo’yilgan 4500 so’m pul bir yildan so’ng qancha bo’ladi? A) 6100 B) 6000 C) 6200 D) 6300 5 / 30 To’rtburchakli muntazam piramidaning yon qirrasidagi ikki yoqli burchak 120 ga teng. Diagonal kesimining yuzasi S ga teng bo’lsa, uning yon sirtini toping. A) 4S B) 3S C) 2S D) 0,5S 6 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 52 B) 108 C) 54 D) 48 7 / 30 y= funktsiyaning aniqlanish sohasini toping. A) (-∞;2)v(2;∞) B) (2;∞) C) [2;∞) D) (-∞;2) 8 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 120 B) 47 C) 18 D) 60 9 / 30 200 kishidan iborat turistlar guruxida 140 kishi ingliz tilini, 90 kishi nemis tilini va 46 kishi ikkala tilni biladi. Ikkala tilni xam bilmaydigan turistlar necha foizni tashkil qiladi. A) 16 B) 12 C) 4 D) 8 10 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (-7;-1) B) (-7; 1) C) (7; 1) D) (4; -3) 11 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 3√2+2/4 B) 5√3+3/3 C) 2√2/3 D) 3√3+1/5 12 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 32 B) 42 C) 36 D) 38 13 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) √5/2 B) 1,5 C) 1 D) √3/2 14 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) √2 B) 1 C) √3 D) 2 15 / 30 Hisoblang A) 2√3 B) √3 C) 1 D) 3√3 16 / 30 Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY uchburchak qanday uchburchak bo‘ladi? A) to`g`ri burchakli uchburchak B) muntazam uchburchak C) teng yonli uchburchak D) ixtiyoriy uchburchak 17 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 222222222222 B) 22222222220 C) 222220175 D) 2222222175 18 / 30 Teng yonli uchburchakning tomonlari 5, 5 va 6 ga teng. Bu uchburchakning bissektiritsalari va medianalari kesishgan nuqtalar A) 1/2 B) 1,2 C) 1/6 D) 1 19 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 2 yoki 50 B) 10 yoki 50 C) 10 D) 50 20 / 30 O’qishni bilmaydigan bola alifbening A,A,A, N,N, S- 6 ta harflarini ixtiyoriy ravishda terib chiqadi. Bunda ANANAS so’zining hosil bo’lish ehtimolini toping. A) 1/60 B) 6/720 C) 5/720 D) 5/24 21 / 30 x2-5|x|-6=0 tenglama ildizini toping A) -1;6 B) ±;±6 C) -1;-6 D) ±6 22 / 30 Tomoni 6 ga teng bo`lgan teng tomonli uchburchakga tashqi chizilgan doiraning yuzini toping. A) 12π B) 7 π C) 10 π D) 6 π 23 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²/4cos²α B) πa²/4sin²α C) πa²(1+2cosα/4sin²) D) πa²(1-2sinα/4sin²) 24 / 30 Tengsizlikni yeching. A) (-3;2) B) (-3;2)v(2;4) C) (2;4) D) (-4;2)v(2;3) 25 / 30 integralning qiymatini toping. A) 0 B) π/2 C) -π/2 D) π/4 26 / 30 Hisoblang A) 2 B) 0 C) -1 D) 1 27 / 30 Quyidagi va to’g’ri chiziqlarning o’zaro holatini aniqlang. A) o’zaro parallel B) o’zaro perpendikulyar C) ayqash to’gri chiziqlar D) o’zaro kesishadi 28 / 30 Agar bank qo`yilgan pulga 40% yillik foyda bersa, qo`yilgan 5000 so`m pul bir yildan keyin qancha bo`ladi ? A) 6200 B) 7200 C) 6900 D) 7000 29 / 30 Agar va b-a=4 bo’lsa, a+b ni toping. A) 4 B) 2 C) 3,5 D) 3 30 / 30 a(x+2)=2x+1 tenglama a ning qanday qiymatida yechimga ega emas? A) (-∞;2)v(2;∞) B) (2;∞) C) (∞;∞) D) (-∞;2) 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz