Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 121 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 1 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 To’rtburchakli muntazam piramidaning yon qirrasidagi ikki yoqli burchak 120 ga teng. Diagonal kesimining yuzasi S ga teng bo’lsa, uning yon sirtini toping. A) 0,5S B) 4S C) 3S D) 2S 2 / 30 y= funksiyaning aniqlanish sohasini toping A) (-∞;0)v(2;∞) B) (0,2) C) (2;∞) D) (-∞;0])v[2;∞) 3 / 30 Tengsizlikni yeching. A) (0;+∞) B) (-1/³ √2 ;0) C) 0 D) to'g'ri javob yo'q 4 / 30 Soddalashtiring. A) 2018a/a+1 B) a+1 C) 2018 D) 2019 5 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 3π/4 B) 4π/3 C) 3π/2 D) 2π/3 6 / 30 sistemada xy ning qiymatini toping. A) 64 B) 60 C) 80 D) 75 7 / 30 sistema yagona yechimga ega bo’ladigan a ning barcha qiymatlari to’plamini toping. A) {1;2} B) {2;4} C) {-1;2} D) {-1;3} 8 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 36 B) 32 C) 38 D) 42 9 / 30 Agar sinx+cosx=a bo’lsa, ning qiymatini toping. A) -1/2 B) 1/3 C) 2/5 D) 1/2 10 / 30 Bekzodda 50 so’m va Sobirda 70 so’m pul bor edi. Anvar Bekzodga o’z pulining 10 foizini bergandan so’ng, Bekzod Sobirga pulining yarmini berdi. So’ng Sobir Anvarga pulining 10 foizini berdi. Anvar o’zidagi pullarini hisoblab, pullari dastlabki holdagi puli bilan teng ekanligini bildi. Anvarda qancha pul bo’lgan? A) 400 B) 375 C) 100 D) 127 11 / 30 Ostki asosining yuzi 32π va ustki asosining yuzi 18π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning sirtini toping. A) 96π B) 100π C) 56π D) 72π 12 / 30 Yuzasi 10 ga teng bo’lgan kvadratning ketma-ket ikki uchidan o’tuvchi aylana chizilgan. Uchinchi uchidan aylanaga urunma o’tkazilgan. Urunma tomondan ikki marta katta bo’lsa, aylana radiusini toping. A) 5 B) 10 C) 6 D) 4 13 / 30 Agar va b-a=4 bo’lsa, a+b ni toping. A) 3 B) 3,5 C) 4 D) 2 14 / 30 x(t)=t2+7t-6 qonuniyat bo’yicha harakatlanayotgan moddiy nuqtaning tezligi harakat boshlangandan necha sekund o’tgach 87 m/s ga teng bo’ladi? A) 54 B) 50 C) 36 D) 40 15 / 30 tenglamalar sistemasini yeching A) (4;4) B) (-4;4) C) (4;–4) D) (-4;-4) 16 / 30 200 kishidan iborat turistlar guruxida 140 kishi ingliz tilini, 90 kishi nemis tilini va 46 kishi ikkala tilni biladi. Ikkala tilni xam bilmaydigan turistlar necha foizni tashkil qiladi. A) 16 B) 8 C) 4 D) 12 17 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) 64√2π/3 B) 3√2π/4 C) 8√2π/5 D) (5√3+3)π/3 18 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusidan katta bo’lgan uchburchaklar sonini toping. A) 0 B) 1 C) cheksiz ko’p D) 2019 19 / 30 Tenglamaning nechta ildizi bor? |x+1|=|2x-1| A) 2 B) 4 C) 3 D) 1 20 / 30 AA1A2A3A4A5A6 muntazam oltiburchakli piramidaning hajmi ga va balandligi 2 ga teng bo‘lsa, u holda AA2A6 kesim yuzini toping. A) √5 B) 2 C) 3 D) √15 21 / 30 A) 2 B) 1 C) 5 D) 3 22 / 30 Hisoblang: A) 1 B) 3 C) 2 D) -1 23 / 30 a=sin 1; b=sin 2; c=sin 3; d=sin 4 va e=sin 5 sonlarni kamayish tartibida joylashtiring. A) b>a>c>d>e B) b>c>a>d>e C) e>b>a>d>c D) a>b>c>d>e 24 / 30 Hisoblang A) √3 B) 1 C) 2√3 D) 3√3 25 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) 2√2 B) 2 C) √2 D) 4 26 / 30 Teng yonli trpetsiyaning asoslari 15 va 25 ga balandligi esa 15 ga teng trapetsiyaning dioganalini toping A) 30 B) 20 C) 28 D) 25 27 / 30 Tengsizlik nechta butun yechimga ega? A) 3 B) 1 C) cheksiz ko’p D) 4 28 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 9 B) 11 C) 12 D) 10 29 / 30 a(x+2)=2x+1 tenglama a ning qanday qiymatida yechimga ega emas? A) (2;∞) B) (-∞;2) C) (∞;∞) D) (-∞;2)v(2;∞) 30 / 30 sistema a ning qanday qiymatida cheksiz ko’p yechimga ega? A) (-∞;6])v[6;∞) B) (2;∞) C) 6 D) (-∞;6) 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz