Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 141 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 7 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Muntazam uchburchakli piramidaning yon qirrasi asos tekisligi bilan 45o li burchak tashkil etgan bo‘lsa, u holda piramidaning yon sirti yuzining uning asosi yuziga nisbatini toping. A) 2√5 B) 2√3 C) 4 D) 3√3 2 / 30 Rombning balandligi 8 ga dioganallarining ko’paytmasi 80 ga teng. Rombning perimetrini toping A) 32 B) 20 C) 16 D) 24 3 / 30 Ushbu funksiyaning boshlang’ich funksiyasini toping. A) ln|x-1/x+4|+c B) ln(|x+4+|x-1|)+c C) ln(|x+4*|x-1|)+c D) ln|x+4/x-1|+c 4 / 30 sistema yagona yechimga ega bo’ladigan a ning barcha qiymatlari to’plamini toping. A) {1;2} B) {-1;3} C) {2;4} D) {-1;2} 5 / 30 Tomoni 6 ga teng bo`lgan teng tomonli uchburchakga tashqi chizilgan doiraning yuzini toping. A) 7 π B) 10 π C) 6 π D) 12π 6 / 30 Agar arctga+ arctgb + arctgc= bo’lsa, a+b+c ni toping. A) 1 B) abc C) ab/c D) ab 7 / 30 Tengsizlikni yeching. A) to'g'ri javob yo'q B) (0;+∞) C) 0 D) (-1/³ √2 ;0) 8 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusidan katta bo’lgan uchburchaklar sonini toping. A) 1 B) 2019 C) 0 D) cheksiz ko’p 9 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakning perimetri 48 va aylana radiusi 7 ga teng bo‘lsa, u holda kesma uzunligini toping A) 30 B) 25 C) 12 D) 15 10 / 30 “Tutgan balig‘ining og‘irligi qancha?” degan savolga baliqchi: “Baliqning dumi 3 kg, boshi uning dumi hamda tanasi yarmining og‘irligiga teng, tanasi esa boshi va dumining og‘irligiga teng”, deb javob berdi. Baliqning og‘irligini (kg) toping. A) 3 B) 6 C) 12 D) 18 11 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 2π/3 B) 3π/2 C) 4π/3 D) 3π/4 12 / 30 Quyidagilardan qaysi biri barcha lar uchun ma’noga ega (aniqlangan)? A) ²ᴷ⁺⁴v2k+1/k²+1 B) 4k+1/1/8:7-1/56 C) (512-1/2⁻⁹)° D) ⁴ᴷ⁺³√-√2k+1 13 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 54 B) 108 C) 48 D) 52 14 / 30 n ning qanday qiymatida ushbu 81 .82 .83 .….8n=51222 tenglik o’rinli bo’ladi? A) 14 B) 10 C) 11 D) 12 15 / 30 Bir vaqtning o’zida 9,13, . . . ,405 va 15,21, . . . ,255 ketma–ketliklarning hadlari bo’lgan sonlarning eng kattasi va eng kichigining ayirmasini toping A) 231 B) 150 C) 228 D) 147 16 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 1 B) 3 C) 2 D) 4 17 / 30 Parallelogrammning tomonlari nisbati 3:5 kabi. Agar parallelogrmmning perimetri 48 ga burchaklaridan biri 1200 ga teng bo’lsa, uning yuzini toping. A) 48√3 B) 135√3/4 C) 67,5 D) 67,5√3 18 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 48√3 B) 52√3 C) 54 D) 108 19 / 30 funksiya uchun quyidagi mulohazalardan qaysi biri o’rinli? A) juft funksiya B) bunday funksiya mavjud emas C) toq funksiya D) juft ham emas, toq ham emas funksiya 20 / 30 Agar f(x)=ax3-5x2+b va bo’lsa, a ni toping. A) 0 B) 3 C) 1 D) 2 21 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 10 yoki 50 B) 50 C) 2 yoki 50 D) 10 22 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 12 B) 10 C) 9 D) 11 23 / 30 To’g’ri to’rtburchakning perimetri 50 ga teng. Bir tomoni boshqa tomonidan 5 ga ko’p. To’g’ri to’rtburchakning yuzini toping. A) 50 B) 225 C) 60 D) 150 24 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 2200 B) 2100 C) 1900 D) 2000 25 / 30 Bekzodda 50 so’m va Sobirda 70 so’m pul bor edi. Anvar Bekzodga o’z pulining 10 foizini bergandan so’ng, Bekzod Sobirga pulining yarmini berdi. So’ng Sobir Anvarga pulining 10 foizini berdi. Anvar o’zidagi pullarini hisoblab, pullari dastlabki holdagi puli bilan teng ekanligini bildi. Anvarda qancha pul bo’lgan? A) 100 B) 400 C) 375 D) 127 26 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) √5/2 B) 1,5 C) √3/2 D) 1 27 / 30 Rasmda ko‘rsatilgan ko‘pyoqlardan qaysi birida 4 ta yoq, 6 ta qirra bor? A) 1, 3 B) 2 C) 1, 2 D) 3 28 / 30 Agar funksiya berilgan bo’lsa, u holda M=ning qiymatini toping. A) e⁻⁵⁰⁵⁰ B) e⁵⁰⁵⁰ C) e⁻⁴⁹⁵⁰ D) e⁴⁹⁵⁰ 29 / 30 |x2-5x-14|+20≥5|x+2|+4|x-7| tengsizlikni yeching. A) [2;4]v{2}v[3;∞) B) [-2;4]v{6} C) [1;6] D) (-∞;-6]v{2}v[12;∞) 30 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) o’tmas burchakli uchburchak B) to’gri burchakli uchburchak C) teng tomonli uchburchak D) o’tkir burchakli uchburchak 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz