Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 138 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 5 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 sonning oxirgi raqamini toping. A) 8 B) 4 C) 6 D) 2 2 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping. A) 17 B) 18 C) 14 D) 16 3 / 30 Quyidagilardan qaysi biri barcha lar uchun ma’noga ega (aniqlangan)? A) (512-1/2⁻⁹)° B) ²ᴷ⁺⁴v2k+1/k²+1 C) 4k+1/1/8:7-1/56 D) ⁴ᴷ⁺³√-√2k+1 4 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 13 ga, katetlaridan biri 52 ga teng. Gipotenuzaga tushirilgan balandlik uzunligini toping A) 7 B) 5 C) 6 D) 4 5 / 30 Bekzodda 50 so’m va Sobirda 70 so’m pul bor edi. Anvar Bekzodga o’z pulining 10 foizini bergandan so’ng, Bekzod Sobirga pulining yarmini berdi. So’ng Sobir Anvarga pulining 10 foizini berdi. Anvar o’zidagi pullarini hisoblab, pullari dastlabki holdagi puli bilan teng ekanligini bildi. Anvarda qancha pul bo’lgan? A) 127 B) 100 C) 375 D) 400 6 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) lg(ln x) B) ln(lg x) C) lg(lg x) D) ln(ln x) 7 / 30 funksiya uchun quyidagi mulohazalardan qaysi biri o’rinli? A) bunday funksiya mavjud emas B) toq funksiya C) juft funksiya D) juft ham emas, toq ham emas funksiya 8 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (4; -3) B) (-7; 1) C) (7; 1) D) (-7;-1) 9 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) √2 B) 2 C) 4 D) 2√2 10 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 1900 B) 2000 C) 2100 D) 2200 11 / 30 7 sonini uchta natural sonlar yig’indisi ko’rinishida necha xil usulda yozish mumkin? A) 3 B) 6 C) 5 D) 4 12 / 30 (-3;4) nuqtaga absissa, ordinata o’qlariga va koordinata boshiga nisbatan simmetrik bo’lgan nuqtalarni tutashtirishdan hosil bo’lgan uchburchakning eng kata tomonini toping. A) 14 B) 24 C) 10 D) 12 13 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 9 B) 10 C) 11 D) 12 14 / 30 Ifodani soddalashtiring. 2 cos55o.cos40o.sin55o+cos110o.sin40o A) 1 B) 0,5 C) 2 D) 0 15 / 30 Soat 3:37 bo’lganda minut va soat millari orasidagi burchakni toping. A) 112,5° B) 113,5° C) 113° D) 100° 16 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 2√2/3 B) 3√2+2/4 C) 3√3+1/5 D) 5√3+3/3 17 / 30 sin2x-cos2x=1 tenglama [-π; 2π] oraliqda nechta ildizga ega? A) 7 B) 10 C) 9 D) 6 18 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 72° B) 90° C) 60° D) 30° 19 / 30 Tomoni 25 ga diagonallaridan biri 4 ga teng bo’lgan rombning yuzini toping. A) 24√5 B) 8√5 C) 32 D) 16 20 / 30 Agar f(x)=ax3-5x2+b va bo’lsa, a ni toping. A) 1 B) 3 C) 0 D) 2 21 / 30 bo’lsa, ni x orqali ifodalang. A) 25/x B) x/25 C) 2-x D) 2/x 22 / 30 Agar bank qo’yilgan pulga 40% yillik bersa, qo’yilgan 4500 so’m pul bir yildan so’ng qancha bo’ladi? A) 6000 B) 6300 C) 6200 D) 6100 23 / 30 Tomoni 6 ga teng bo`lgan teng tomonli uchburchakga tashqi chizilgan doiraning yuzini toping. A) 10 π B) 12π C) 6 π D) 7 π 24 / 30 a=sin 1; b=sin 2; c=sin 3; d=sin 4 va e=sin 5 sonlarni kamayish tartibida joylashtiring. A) b>a>c>d>e B) e>b>a>d>c C) a>b>c>d>e D) b>c>a>d>e 25 / 30 integralning qiymatini toping. A) π/2 B) 0 C) π/4 D) -π/2 26 / 30 Soddalashtiring. (0<m<7) A) m B) 7-2m C) 2m-7 D) 7 27 / 30 To’g’ri burchakli uchburchakning yuzi 24 ga, katetlaridan biri 6 ga teng bo’lsa, gipotenuzasini toping A) 11 B) 10 C) 12 D) √46 28 / 30 Bir vaqtning o’zida 9,13, . . . ,405 va 15,21, . . . ,255 ketma–ketliklarning hadlari bo’lgan sonlarning eng kattasi va eng kichigining ayirmasini toping A) 228 B) 231 C) 147 D) 150 29 / 30 tenglamalar sistemasini yeching A) (4;4) B) (-4;4) C) (-4;-4) D) (4;–4) 30 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 2 yoki 50 B) 10 yoki 50 C) 10 D) 50 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz