Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 120 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 1 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (-7; 1) B) (-7;-1) C) (7; 1) D) (4; -3) 2 / 30 integralning qiymatini toping. A) -π/2 B) π/4 C) π/2 D) 0 3 / 30 Parallelogrammning tomonlari nisbati 3:5 kabi. Agar parallelogrmmning perimetri 48 ga burchaklaridan biri 1200 ga teng bo’lsa, uning yuzini toping. A) 135√3/4 B) 67,5 C) 48√3 D) 67,5√3 4 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 3√2+2/4 B) 3√3+1/5 C) 2√2/3 D) 5√3+3/3 5 / 30 Hisoblang A) 1/2 B) 2 C) √3 D) √3/2 6 / 30 Agar arctga+ arctgb + arctgc= bo’lsa, a+b+c ni toping. A) abc B) ab C) ab/c D) 1 7 / 30 |x2-5x-14|+20≥5|x+2|+4|x-7| tengsizlikni yeching. A) [1;6] B) [2;4]v{2}v[3;∞) C) (-∞;-6]v{2}v[12;∞) D) [-2;4]v{6} 8 / 30 Tomoni 2 ga teng kvadratga tashqi chizilgan aylana uzunligini toping. A) 3π B) 2π C) 2π/3 D) 4π 9 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 108 B) 54 C) 52√3 D) 48√3 10 / 30 200 kishidan iborat turistlar guruxida 140 kishi ingliz tilini, 90 kishi nemis tilini va 46 kishi ikkala tilni biladi. Ikkala tilni xam bilmaydigan turistlar necha foizni tashkil qiladi. A) 12 B) 16 C) 4 D) 8 11 / 30 sistemada xy ning qiymatini toping. A) 75 B) 64 C) 60 D) 80 12 / 30 Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY uchburchak qanday uchburchak bo‘ladi? A) teng yonli uchburchak B) muntazam uchburchak C) to`g`ri burchakli uchburchak D) ixtiyoriy uchburchak 13 / 30 AA1A2A3A4A5A6 muntazam oltiburchakli piramidaning hajmi ga va balandligi 2 ga teng bo‘lsa, u holda AA2A6 kesim yuzini toping. A) √15 B) √5 C) 3 D) 2 14 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²(1-2sinα/4sin²) B) πa²/4sin²α C) πa²(1+2cosα/4sin²) D) πa²/4cos²α 15 / 30 Agar bank qo’yilgan pulga 40% yillik bersa, qo’yilgan 4500 so’m pul bir yildan so’ng qancha bo’ladi? A) 6100 B) 6000 C) 6200 D) 6300 16 / 30 Teng yonli uchburchakning tomonlari 5, 5 va 6 ga teng. Bu uchburchakning bissektiritsalari va medianalari kesishgan nuqtalar A) 1/6 B) 1,2 C) 1/2 D) 1 17 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 2 B) 1 C) 4 D) 3 18 / 30 x2-5|x|-6=0 tenglama ildizini toping A) -1;-6 B) ±6 C) ±;±6 D) -1;6 19 / 30 Tenglamani yeching. |x2-11x+10|=x2-11x+10 A) 1; 10 B) (-∞;1]v[10;∞) C) (-∞;1] D) [10;∞) 20 / 30 Tengsizlik nechta butun yechimga ega? A) 1 B) cheksiz ko’p C) 4 D) 3 21 / 30 7 sonini uchta natural sonlar yig’indisi ko’rinishida necha xil usulda yozish mumkin? A) 4 B) 6 C) 3 D) 5 22 / 30 sonning oxirgi raqamini toping. A) 2 B) 4 C) 6 D) 8 23 / 30 Yuzasi 10 ga teng bo’lgan kvadratning ketma-ket ikki uchidan o’tuvchi aylana chizilgan. Uchinchi uchidan aylanaga urunma o’tkazilgan. Urunma tomondan ikki marta katta bo’lsa, aylana radiusini toping. A) 10 B) 6 C) 4 D) 5 24 / 30 a=sin 1; b=sin 2; c=sin 3; d=sin 4 va e=sin 5 sonlarni kamayish tartibida joylashtiring. A) b>c>a>d>e B) a>b>c>d>e C) b>a>c>d>e D) e>b>a>d>c 25 / 30 x(t)=t2+6t+5 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakat boshlangandan necha sekund o’tgach boshlang’ich nuqtaga nisbatan 77 metr masofaga siljiydi? A) 10 B) 8 C) 6 D) 7 26 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) 2√2 B) √2 C) 4 D) 2 27 / 30 Tenglamaning ildizlari yig`indisini toping. A) 4 B) 5 C) 6 D) 3 28 / 30 Ushbu funksiyaning boshlang’ich funksiyasini toping. A) ln(|x+4+|x-1|)+c B) ln|x+4/x-1|+c C) ln(|x+4*|x-1|)+c D) ln|x-1/x+4|+c 29 / 30 Tomoni 6 ga teng bo`lgan teng tomonli uchburchakga tashqi chizilgan doiraning yuzini toping. A) 10 π B) 12π C) 6 π D) 7 π 30 / 30 sistema a ning qanday qiymatida cheksiz ko’p yechimga ega? A) (-∞;6])v[6;∞) B) 6 C) (2;∞) D) (-∞;6) 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz