Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 134 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 4 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Sin9x =4sin3x tenglamani yeching A) π/2+πn, n€Ζ B) πn, n€Ζ C) π/3+πn, n€Ζ D) πn/3, n€Ζ 2 / 30 A) 5 B) 3 C) 2 D) 1 3 / 30 x(t)=t2+7t-6 qonuniyat bo’yicha harakatlanayotgan moddiy nuqtaning tezligi harakat boshlangandan necha sekund o’tgach 87 m/s ga teng bo’ladi? A) 54 B) 50 C) 40 D) 36 4 / 30 a=sin 1; b=sin 2; c=sin 3; d=sin 4 va e=sin 5 sonlarni kamayish tartibida joylashtiring. A) b>a>c>d>e B) a>b>c>d>e C) e>b>a>d>c D) b>c>a>d>e 5 / 30 Hisoblang A) 2 B) 1/2 C) √3/2 D) √3 6 / 30 Ifodani soddalashtiring. 2 cos55o.cos40o.sin55o+cos110o.sin40o A) 0 B) 1 C) 0,5 D) 2 7 / 30 Fazoda (1;2;3) nuqtalardan o’tuvchi to’g’ri chiziq tenglamasini tuzing. A) 2x+3y+z=0 B) -x-y+z=0 C) x=y/3=z/2 D) x-1/2=y-2/3=z-3/4 8 / 30 (-3;4) nuqtaga absissa, ordinata o’qlariga va koordinata boshiga nisbatan simmetrik bo’lgan nuqtalarni tutashtirishdan hosil bo’lgan uchburchakning eng kata tomonini toping. A) 24 B) 10 C) 14 D) 12 9 / 30 integralning qiymatini toping. A) π/2 B) 0 C) π/4 D) -π/2 10 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 18 B) 60 C) 47 D) 120 11 / 30 Tomoni 25 ga diagonallaridan biri 4 ga teng bo’lgan rombning yuzini toping. A) 16 B) 24√5 C) 8√5 D) 32 12 / 30 funktsiyaning aniqlanish sohasini toping. A) (-∞;1]v[2;∞) B) (-∞;1)v(2;∞) C) (1;2) D) [1;2] 13 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 3√2+2/4 B) 5√3+3/3 C) 2√2/3 D) 3√3+1/5 14 / 30 y= funksiyaning aniqlanish sohasini toping A) (0,2) B) (2;∞) C) (-∞;0])v[2;∞) D) (-∞;0)v(2;∞) 15 / 30 funksiya uchun quyidagi mulohazalardan qaysi biri o’rinli? A) toq funksiya B) bunday funksiya mavjud emas C) juft ham emas, toq ham emas funksiya D) juft funksiya 16 / 30 Tengsizlikni yeching. A) 0 B) (-1/³ √2 ;0) C) (0;+∞) D) to'g'ri javob yo'q 17 / 30 To’rtburchakli muntazam piramidaning yon qirrasidagi ikki yoqli burchak 120 ga teng. Diagonal kesimining yuzasi S ga teng bo’lsa, uning yon sirtini toping. A) 4S B) 3S C) 2S D) 0,5S 18 / 30 Tengsizlik nechta butun yechimga ega? A) cheksiz ko’p B) 3 C) 4 D) 1 19 / 30 y=cos(2sinx) funksiyaning qiymatlar sohasini toping. A) [0;cos2] B) [cos2;1] C) [0;1] D) [-1;1] 20 / 30 sistemadan x+y+z ning qiymatini toping. A) 139/41 B) 150/41 C) 140/41 D) -139/41 21 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 4 B) 3 C) 2 D) 1 22 / 30 Tomoni 12 ga teng bo`lgan teng tomonli uchburchakga ichki chizilgan aylana uzunligini toping. A) 4√3π B) 12π C) 2√3π D) 3π 23 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) √2 B) 1 C) √3 D) 2 24 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakning perimetri 48 va aylana radiusi 7 ga teng bo‘lsa, u holda kesma uzunligini toping A) 25 B) 30 C) 15 D) 12 25 / 30 Tenglamani yeching. (x+2)+(x+4)+(x+6)+…+(x+100)=2800 A) 5 B) 4 C) 3 D) 7 26 / 30 Agar funksiya berilgan bo’lsa, u holda M=ning qiymatini toping. A) e⁻⁵⁰⁵⁰ B) e⁵⁰⁵⁰ C) e⁻⁴⁹⁵⁰ D) e⁴⁹⁵⁰ 27 / 30 a ning 7x-a-13=(a-5)(x+7) tenglama yechimga ega bo’lmaydigan qiymatining natural bo’luvchilar sonini toping. A) 4 B) 12 C) 8 D) 6 28 / 30 Radiuslari orasidagi burchagi 36o va radiusi 5 ga teng bo`lgan sektor yoyining uzunligini toping. A) 2π B) π C) π/2 D) 2π/3 29 / 30 Soat 3:37 bo’lganda minut va soat millari orasidagi burchakni toping. A) 113,5° B) 112,5° C) 100° D) 113° 30 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) teng tomonli uchburchak B) o’tmas burchakli uchburchak C) to’gri burchakli uchburchak D) o’tkir burchakli uchburchak 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz