Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 153 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Muntazam uchburchakli piramidaning yon qirrasi asos tekisligi bilan 45o li burchak tashkil etgan bo‘lsa, u holda piramidaning yon sirti yuzining uning asosi yuziga nisbatini toping. A) 3√3 B) 2√5 C) 2√3 D) 4 2 / 30 Teng yonli trpetsiyaning asoslari 15 va 25 ga balandligi esa 15 ga teng trapetsiyaning dioganalini toping A) 28 B) 20 C) 30 D) 25 3 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusidan katta bo’lgan uchburchaklar sonini toping. A) 0 B) 2019 C) 1 D) cheksiz ko’p 4 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakning perimetri 48 va aylana radiusi 7 ga teng bo‘lsa, u holda kesma uzunligini toping A) 15 B) 30 C) 25 D) 12 5 / 30 Sin9x =4sin3x tenglamani yeching A) π/3+πn, n€Ζ B) πn/3, n€Ζ C) πn, n€Ζ D) π/2+πn, n€Ζ 6 / 30 ABCD kvadrat ichidan olingan O nuqtadan A, B, C uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5 ga teng bo’lsa, u holda OD kesma uzunligini toping. A) 6 B) 3 C) √32 D) √37 7 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) 4 B) 2√2 C) 2 D) √2 8 / 30 sistemadan x+y+z ning qiymatini toping. A) -139/41 B) 139/41 C) 140/41 D) 150/41 9 / 30 Quyidagi 2x-y+3z=2018 va x+5y+z=2019 tekisliklarning holatini aniqlang. A) ayqash B) o’zaro parallel C) o’zaro perpendikulyar D) aniqlab bo’lmaydi 10 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 3√3+1/5 B) 5√3+3/3 C) 2√2/3 D) 3√2+2/4 11 / 30 ifodaning qiymatini toping. A) -0,5 B) 0,5 C) -2 D) 0 12 / 30 To’g’ri burchakli uchburchakning yuzi 24 ga, katetlaridan biri 6 ga teng bo’lsa, gipotenuzasini toping A) 10 B) 11 C) √46 D) 12 13 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 54 B) 52√3 C) 48√3 D) 108 14 / 30 Agar sinx+cosx=a bo’lsa, ning qiymatini toping. A) -1/2 B) 2/5 C) 1/2 D) 1/3 15 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 11 B) 9 C) 12 D) 10 16 / 30 Agar f(x)=ax3-5x2+b va bo’lsa, a ni toping. A) 0 B) 1 C) 2 D) 3 17 / 30 a(x+2)=2x+1 tenglama a ning qanday qiymatida yechimga ega emas? A) (2;∞) B) (∞;∞) C) (-∞;2)v(2;∞) D) (-∞;2) 18 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping. A) 14 B) 17 C) 16 D) 18 19 / 30 funksiya uchun quyidagi mulohazalardan qaysi biri o’rinli? A) juft ham emas, toq ham emas funksiya B) toq funksiya C) bunday funksiya mavjud emas D) juft funksiya 20 / 30 Bog’bon uch kun davomida o’nta daraxt ko’chati o’tqazishi lozim. Agar bog’bon bir kunda eng kamida bitta ko’chat o’tqazadigan bo’lsa, u shu ishni kunlar bo’yicha necha xil usul bilan taqsimlashi mumkin? A) 30 B) 32 C) 25 D) 36 21 / 30 funktsiyaning aniqlanish sohasini toping. A) (1;2) B) (-∞;1]v[2;∞) C) [1;2] D) (-∞;1)v(2;∞) 22 / 30 A) 3 B) 2 C) 1 D) 5 23 / 30 sistemada xy ning qiymatini toping. A) 60 B) 64 C) 75 D) 80 24 / 30 sonning oxirgi raqamini toping. A) 6 B) 2 C) 4 D) 8 25 / 30 x2-5|x|-6=0 tenglama ildizini toping A) ±;±6 B) ±6 C) -1;-6 D) -1;6 26 / 30 m ning qanday eng katta butun qiymatida y=2x-mx-5+m funksiyaning grafigi 1,3,4 –choraklarda yotadi? A) 1 B) 3 C) 2 D) 5 27 / 30 Tenglamaning ildizlari yig`indisini toping. A) 4 B) 6 C) 3 D) 5 28 / 30 Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY uchburchak qanday uchburchak bo‘ladi? A) muntazam uchburchak B) ixtiyoriy uchburchak C) teng yonli uchburchak D) to`g`ri burchakli uchburchak 29 / 30 Ostki asosining yuzi 32π va ustki asosining yuzi 18π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning sirtini toping. A) 96π B) 100π C) 56π D) 72π 30 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) 1 B) 1,5 C) √5/2 D) √3/2 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz