Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 149 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 2000 B) 2100 C) 2200 D) 1900 2 / 30 Fazoda (1;2;3) nuqtalardan o’tuvchi to’g’ri chiziq tenglamasini tuzing. A) x-1/2=y-2/3=z-3/4 B) x=y/3=z/2 C) 2x+3y+z=0 D) -x-y+z=0 3 / 30 Hisoblang: A) 2 B) -1 C) 1 D) 3 4 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 52 B) 48 C) 54 D) 108 5 / 30 a=sin 1; b=sin 2; c=sin 3; d=sin 4 va e=sin 5 sonlarni kamayish tartibida joylashtiring. A) b>a>c>d>e B) a>b>c>d>e C) e>b>a>d>c D) b>c>a>d>e 6 / 30 Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY uchburchak qanday uchburchak bo‘ladi? A) to`g`ri burchakli uchburchak B) ixtiyoriy uchburchak C) muntazam uchburchak D) teng yonli uchburchak 7 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 4π/3 B) 3π/2 C) 3π/4 D) 2π/3 8 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 3 B) 4 C) 2 D) 1 9 / 30 Hisoblang A) 2√3 B) √3 C) 1 D) 3√3 10 / 30 ABCD kvadrat ichidan olingan O nuqtadan A, B, C uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5 ga teng bo’lsa, u holda OD kesma uzunligini toping. A) √37 B) 3 C) 6 D) √32 11 / 30 Agar bank qo`yilgan pulga 40% yillik foyda bersa, qo`yilgan 5000 so`m pul bir yildan keyin qancha bo`ladi ? A) 7200 B) 7000 C) 6900 D) 6200 12 / 30 Radiusi 25 bo’lgan doirada 48 ga teng vatar o’tkazilgan. Doira markazidan shu vatargacha masofani toping. A) 8 B) 9 C) 7 D) 10 13 / 30 Tenglamani yeching. (x+2)+(x+4)+(x+6)+…+(x+100)=2800 A) 4 B) 5 C) 3 D) 7 14 / 30 Bekzodda 50 so’m va Sobirda 70 so’m pul bor edi. Anvar Bekzodga o’z pulining 10 foizini bergandan so’ng, Bekzod Sobirga pulining yarmini berdi. So’ng Sobir Anvarga pulining 10 foizini berdi. Anvar o’zidagi pullarini hisoblab, pullari dastlabki holdagi puli bilan teng ekanligini bildi. Anvarda qancha pul bo’lgan? A) 127 B) 100 C) 375 D) 400 15 / 30 Teng yonli uchburchakning tomonlari 5, 5 va 6 ga teng. Bu uchburchakning bissektiritsalari va medianalari kesishgan nuqtalar A) 1/2 B) 1/6 C) 1,2 D) 1 16 / 30 Sin9x =4sin3x tenglamani yeching A) π/3+πn, n€Ζ B) πn, n€Ζ C) πn/3, n€Ζ D) π/2+πn, n€Ζ 17 / 30 Hisoblang A) √3 B) √3/2 C) 2 D) 1/2 18 / 30 Quyidagilardan qaysi biri barcha lar uchun ma’noga ega (aniqlangan)? A) ²ᴷ⁺⁴v2k+1/k²+1 B) 4k+1/1/8:7-1/56 C) ⁴ᴷ⁺³√-√2k+1 D) (512-1/2⁻⁹)° 19 / 30 To’g’ri to’rtburchakning perimetri 50 ga teng. Bir tomoni boshqa tomonidan 5 ga ko’p. To’g’ri to’rtburchakning yuzini toping. A) 50 B) 60 C) 225 D) 150 20 / 30 Tomoni 6 ga teng bo`lgan teng tomonli uchburchakga tashqi chizilgan doiraning yuzini toping. A) 6 π B) 7 π C) 10 π D) 12π 21 / 30 x(t)=t2+7t-6 qonuniyat bo’yicha harakatlanayotgan moddiy nuqtaning tezligi harakat boshlangandan necha sekund o’tgach 87 m/s ga teng bo’ladi? A) 54 B) 40 C) 36 D) 50 22 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4720 B) 4716 C) 4680 D) 4760 23 / 30 Soddalashtiring. (0<m<7) A) 7-2m B) 7 C) 2m-7 D) m 24 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 60° B) 90° C) 72° D) 30° 25 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 222220175 B) 2222222175 C) 222222222222 D) 22222222220 26 / 30 A) √6 B) 1 C) 2 D) 0 27 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) -4sin2x*cos(2cos2x) B) 4sin2x*cos(2cos2x) C) 4sin2x*cos(cos2x) D) -4sin2x*cos(cos2x) 28 / 30 Soddalashtiring. A) a+1 B) 2018 C) 2019 D) 2018a/a+1 29 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) √3 B) √2 C) 2 D) 1 30 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 4 B) 5 C) 6 D) 8 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz