Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 153 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 funktsiyaning aniqlanish sohasini toping. A) (1;2) B) [1;2] C) (-∞;1)v(2;∞) D) (-∞;1]v[2;∞) 2 / 30 Tengsizlikni yeching. A) to'g'ri javob yo'q B) (0;+∞) C) 0 D) (-1/³ √2 ;0) 3 / 30 Teng yonli trpetsiyaning asoslari 15 va 25 ga balandligi esa 15 ga teng trapetsiyaning dioganalini toping A) 30 B) 25 C) 20 D) 28 4 / 30 sistemadan x+y ning qiymatini toping. A) 12 B) 6 C) 35/4 D) -12 5 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) -4sin2x*cos(2cos2x) B) 4sin2x*cos(cos2x) C) 4sin2x*cos(2cos2x) D) -4sin2x*cos(cos2x) 6 / 30 Soddalashtiring. (0<m<7) A) 2m-7 B) 7 C) 7-2m D) m 7 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 32 B) 38 C) 36 D) 42 8 / 30 a(x+2)=2x+1 tenglama a ning qanday qiymatida yechimga ega emas? A) (∞;∞) B) (-∞;2)v(2;∞) C) (-∞;2) D) (2;∞) 9 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) 1 B) √3 C) √2 D) 2 10 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) o’tkir burchakli uchburchak B) to’gri burchakli uchburchak C) teng tomonli uchburchak D) o’tmas burchakli uchburchak 11 / 30 integralning qiymatini toping. A) -π/2 B) π/2 C) π/4 D) 0 12 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping. A) 16 B) 18 C) 17 D) 14 13 / 30 Yuzasi 10 ga teng bo’lgan kvadratning ketma-ket ikki uchidan o’tuvchi aylana chizilgan. Uchinchi uchidan aylanaga urunma o’tkazilgan. Urunma tomondan ikki marta katta bo’lsa, aylana radiusini toping. A) 5 B) 10 C) 4 D) 6 14 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 1; 2; 1,5; 1,2 ga teng bo’ladigan barcha to’g’ri to’rtburchaklar sonini toping A) 0 B) 1 C) 2 D) cheksiz ko’p 15 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5, 6 ga teng bo’lsa, u holda AB tomon uzunligini toping. A) bunday to’gri to’rtburchak mavjud emas B) √37 C) 2 D) √7 16 / 30 Soat 3:37 bo’lganda minut va soat millari orasidagi burchakni toping. A) 113,5° B) 100° C) 112,5° D) 113° 17 / 30 Tomoni 12 ga teng bo`lgan teng tomonli uchburchakga ichki chizilgan aylana uzunligini toping. A) 3π B) 4√3π C) 12π D) 2√3π 18 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 48 B) 54 C) 108 D) 52 19 / 30 Teng yonli uchburchakning tomonlari 5, 5 va 6 ga teng. Bu uchburchakning bissektiritsalari va medianalari kesishgan nuqtalar A) 1 B) 1,2 C) 1/2 D) 1/6 20 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 13 ga, katetlaridan biri 52 ga teng. Gipotenuzaga tushirilgan balandlik uzunligini toping A) 5 B) 7 C) 4 D) 6 21 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) 64√2π/3 B) (5√3+3)π/3 C) 8√2π/5 D) 3√2π/4 22 / 30 Tengsizlikni yeching. A) (2;4) B) (-3;2) C) (-3;2)v(2;4) D) (-4;2)v(2;3) 23 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²/4cos²α B) πa²/4sin²α C) πa²(1-2sinα/4sin²) D) πa²(1+2cosα/4sin²) 24 / 30 Agar funksiya berilgan bo’lsa, u holda M=ning qiymatini toping. A) e⁻⁵⁰⁵⁰ B) e⁻⁴⁹⁵⁰ C) e⁴⁹⁵⁰ D) e⁵⁰⁵⁰ 25 / 30 Radiusi 25 bo’lgan doirada 48 ga teng vatar o’tkazilgan. Doira markazidan shu vatargacha masofani toping. A) 10 B) 9 C) 7 D) 8 26 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 3 B) 2 C) 4 D) 1 27 / 30 Qaysi javobda faqat juft funksiyalar ko’rsatilgan? A) 2, 3 B) 1, 3 C) 3, 4 D) 1,4 28 / 30 Tengsizlik nechta butun yechimga ega? A) 1 B) 3 C) 4 D) cheksiz ko’p 29 / 30 Hisoblang A) √3/2 B) 1/2 C) √3 D) 2 30 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) 2√2 B) √2 C) 4 D) 2 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz