Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 154 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Yuzasi 10 ga teng bo’lgan kvadratning ketma-ket ikki uchidan o’tuvchi aylana chizilgan. Uchinchi uchidan aylanaga urunma o’tkazilgan. Urunma tomondan ikki marta katta bo’lsa, aylana radiusini toping. A) 10 B) 5 C) 4 D) 6 2 / 30 To‘g‘ri to‘rtburchakning eni 25% ga orttirildi, bo‘yi esa 25% ga kamaytirildi. Natijada uning yuzi qanday o‘zgardi? A) 2,5% ga ortadi B) 6,25% ga ortadi C) o‘zgarmaydi D) 6,25% ga kamayadi 3 / 30 sistemadan x+y ning qiymatini toping. A) 6 B) -12 C) 35/4 D) 12 4 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (-7;-1) B) (7; 1) C) (4; -3) D) (-7; 1) 5 / 30 sin2x-cos2x=1 tenglama [-π; 2π] oraliqda nechta ildizga ega? A) 9 B) 7 C) 10 D) 6 6 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) 1,5 B) √5/2 C) √3/2 D) 1 7 / 30 Soddalashtiring. A) 2019 B) 2018 C) 2018a/a+1 D) a+1 8 / 30 sonning oxirgi raqamini toping. A) 8 B) 2 C) 6 D) 4 9 / 30 a(x+2)=2x+1 tenglama a ning qanday qiymatida yechimga ega emas? A) (2;∞) B) (-∞;2) C) (∞;∞) D) (-∞;2)v(2;∞) 10 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 2 B) 3 C) 4 D) 1 11 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 22222222220 B) 2222222175 C) 222222222222 D) 222220175 12 / 30 Anvar tub son o’yladi va o’ylagan sonini 5 ga ko’paytirib, 8 ni ayirgan edi, yana tub son hosil bo’ldi. Anvar qanday son o’ylagan? A) aniqlab bo’lmaydi B) 2 C) 374389 D) 412967 13 / 30 y= funksiyaning aniqlanish sohasini toping A) (-∞;0])v[2;∞) B) (-∞;0)v(2;∞) C) (2;∞) D) (0,2) 14 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) ln(lg x) B) lg(lg x) C) lg(ln x) D) ln(ln x) 15 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 2π/3 B) 4π/3 C) 3π/4 D) 3π/2 16 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 18 B) 60 C) 120 D) 47 17 / 30 To’rtburchakli muntazam piramidaning yon qirrasidagi ikki yoqli burchak 120 ga teng. Diagonal kesimining yuzasi S ga teng bo’lsa, uning yon sirtini toping. A) 3S B) 4S C) 0,5S D) 2S 18 / 30 Quyidagi va to’g’ri chiziqlarning o’zaro holatini aniqlang. A) ayqash to’gri chiziqlar B) o’zaro parallel C) o’zaro perpendikulyar D) o’zaro kesishadi 19 / 30 Bekzodda 50 so’m va Sobirda 70 so’m pul bor edi. Anvar Bekzodga o’z pulining 10 foizini bergandan so’ng, Bekzod Sobirga pulining yarmini berdi. So’ng Sobir Anvarga pulining 10 foizini berdi. Anvar o’zidagi pullarini hisoblab, pullari dastlabki holdagi puli bilan teng ekanligini bildi. Anvarda qancha pul bo’lgan? A) 375 B) 100 C) 400 D) 127 20 / 30 Rasmda ko‘rsatilgan ko‘pyoqlardan qaysi birida 4 ta yoq, 6 ta qirra bor? A) 1, 3 B) 3 C) 2 D) 1, 2 21 / 30 Tomoni 6 ga teng bo`lgan teng tomonli uchburchakga tashqi chizilgan doiraning yuzini toping. A) 12π B) 7 π C) 10 π D) 6 π 22 / 30 Tomoni 25 ga diagonallaridan biri 4 ga teng bo’lgan rombning yuzini toping. A) 16 B) 8√5 C) 32 D) 24√5 23 / 30 Tengsizlikni yeching. A) (-4;2)v(2;3) B) (2;4) C) (-3;2)v(2;4) D) (-3;2) 24 / 30 Hisoblang A) 1 B) 3√3 C) 2√3 D) √3 25 / 30 A) 2 B) 1 C) 3 D) 5 26 / 30 Muntazam uchburchakli piramidaning yon qirrasi asos tekisligi bilan 45o li burchak tashkil etgan bo‘lsa, u holda piramidaning yon sirti yuzining uning asosi yuziga nisbatini toping. A) 3√3 B) 2√3 C) 4 D) 2√5 27 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²/4sin²α B) πa²(1+2cosα/4sin²) C) πa²(1-2sinα/4sin²) D) πa²/4cos²α 28 / 30 Fazoda (1;2;3) nuqtalardan o’tuvchi to’g’ri chiziq tenglamasini tuzing. A) x-1/2=y-2/3=z-3/4 B) 2x+3y+z=0 C) -x-y+z=0 D) x=y/3=z/2 29 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusidan katta bo’lgan uchburchaklar sonini toping. A) 2019 B) 0 C) cheksiz ko’p D) 1 30 / 30 Hisoblang A) 1/2 B) √3/2 C) 2 D) √3 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz