Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 153 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 (-3;4) nuqtaga absissa, ordinata o’qlariga va koordinata boshiga nisbatan simmetrik bo’lgan nuqtalarni tutashtirishdan hosil bo’lgan uchburchakning eng kata tomonini toping. A) 12 B) 14 C) 24 D) 10 2 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusidan katta bo’lgan uchburchaklar sonini toping. A) cheksiz ko’p B) 0 C) 2019 D) 1 3 / 30 Agar va b-a=4 bo’lsa, a+b ni toping. A) 3,5 B) 2 C) 4 D) 3 4 / 30 Agar sinx+cosx=a bo’lsa, ning qiymatini toping. A) -1/2 B) 1/2 C) 1/3 D) 2/5 5 / 30 a=sin 1; b=sin 2; c=sin 3; d=sin 4 va e=sin 5 sonlarni kamayish tartibida joylashtiring. A) e>b>a>d>c B) b>c>a>d>e C) b>a>c>d>e D) a>b>c>d>e 6 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 1; 2; 1,5; 1,2 ga teng bo’ladigan barcha to’g’ri to’rtburchaklar sonini toping A) 0 B) 1 C) cheksiz ko’p D) 2 7 / 30 Ag ar tgα=2 bo’lsa, u holda ni hisoblang A) 10/3 B) 10/27 C) -10/3 D) -10/27 8 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 120 B) 47 C) 60 D) 18 9 / 30 Ushbu funksiyaning boshlang’ich funksiyasini toping. A) ln(|x+4*|x-1|)+c B) ln|x-1/x+4|+c C) ln(|x+4+|x-1|)+c D) ln|x+4/x-1|+c 10 / 30 Hisoblang: A) 3 B) 1 C) -1 D) 2 11 / 30 tenglamalar sistemasini yeching A) (4;–3) B) (–4;3) C) (4;3) D) (3;–4) 12 / 30 O’qishni bilmaydigan bola alifbening A,A,A, N,N, S- 6 ta harflarini ixtiyoriy ravishda terib chiqadi. Bunda ANANAS so’zining hosil bo’lish ehtimolini toping. A) 1/60 B) 6/720 C) 5/24 D) 5/720 13 / 30 Tengsizlik nechta butun yechimga ega? A) 4 B) 1 C) cheksiz ko’p D) 3 14 / 30 Hisoblang A) 1 B) 0 C) -1 D) 2 15 / 30 Agar arctga+ arctgb + arctgc= bo’lsa, a+b+c ni toping. A) ab/c B) ab C) abc D) 1 16 / 30 Bog’bon uch kun davomida o’nta daraxt ko’chati o’tqazishi lozim. Agar bog’bon bir kunda eng kamida bitta ko’chat o’tqazadigan bo’lsa, u shu ishni kunlar bo’yicha necha xil usul bilan taqsimlashi mumkin? A) 36 B) 30 C) 25 D) 32 17 / 30 integralning qiymatini toping. A) 0 B) π/4 C) π/2 D) -π/2 18 / 30 Sin9x =4sin3x tenglamani yeching A) π/2+πn, n€Ζ B) πn, n€Ζ C) πn/3, n€Ζ D) π/3+πn, n€Ζ 19 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) √2 B) 4 C) 2√2 D) 2 20 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 108 B) 54 C) 48√3 D) 52√3 21 / 30 Ifodani soddalashtiring. 2 cos55o.cos40o.sin55o+cos110o.sin40o A) 0 B) 0,5 C) 2 D) 1 22 / 30 Tenglamaning nechta ildizi bor? |x+1|=|2x-1| A) 4 B) 2 C) 1 D) 3 23 / 30 Tengsizlikni yeching. A) (-3;2) B) (-4;2)v(2;3) C) (2;4) D) (-3;2)v(2;4) 24 / 30 sistemadan x+y ning qiymatini toping. A) -12 B) 6 C) 35/4 D) 12 25 / 30 Ushbu arifmetik progressiyaning manfiy hadlari yig’indisini toping. A) -0,75 B) -0,25 C) -0,5 D) -1 26 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 2 B) 4 C) 3 D) 1 27 / 30 sin2x-cos2x=1 tenglama [-π; 2π] oraliqda nechta ildizga ega? A) 7 B) 10 C) 6 D) 9 28 / 30 y= funktsiyaning aniqlanish sohasini toping. A) (-∞;2) B) (2;∞) C) [2;∞) D) (-∞;2)v(2;∞) 29 / 30 Hisoblang. A) 2/34 B) 17/34 C) 2/17 D) 15/34 30 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) (5√3+3)π/3 B) 8√2π/5 C) 3√2π/4 D) 64√2π/3 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz