Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 146 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 7 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Hisoblang: A) -1 B) 1 C) 2 D) 3 2 / 30 a=sin 1; b=sin 2; c=sin 3; d=sin 4 va e=sin 5 sonlarni kamayish tartibida joylashtiring. A) e>b>a>d>c B) a>b>c>d>e C) b>a>c>d>e D) b>c>a>d>e 3 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 8 B) 6 C) 5 D) 4 4 / 30 Rasmda ko‘rsatilgan ko‘pyoqlardan qaysi birida 4 ta yoq, 6 ta qirra bor? A) 2 B) 3 C) 1, 3 D) 1, 2 5 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) (5√3+3)π/3 B) 3√2π/4 C) 64√2π/3 D) 8√2π/5 6 / 30 To‘g‘ri to‘rtburchakning eni 25% ga orttirildi, bo‘yi esa 25% ga kamaytirildi. Natijada uning yuzi qanday o‘zgardi? A) 6,25% ga ortadi B) 6,25% ga kamayadi C) 2,5% ga ortadi D) o‘zgarmaydi 7 / 30 Rombning balandligi 8 ga dioganallarining ko’paytmasi 80 ga teng. Rombning perimetrini toping A) 16 B) 32 C) 20 D) 24 8 / 30 Quyidagi 2x-y+3z=2018 va x+5y+z=2019 tekisliklarning holatini aniqlang. A) o’zaro parallel B) aniqlab bo’lmaydi C) o’zaro perpendikulyar D) ayqash 9 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 9 B) 11 C) 10 D) 12 10 / 30 |x2-5x-14|+20≥5|x+2|+4|x-7| tengsizlikni yeching. A) [-2;4]v{6} B) [2;4]v{2}v[3;∞) C) (-∞;-6]v{2}v[12;∞) D) [1;6] 11 / 30 Yuzasi 10 ga teng bo’lgan kvadratning ketma-ket ikki uchidan o’tuvchi aylana chizilgan. Uchinchi uchidan aylanaga urunma o’tkazilgan. Urunma tomondan ikki marta katta bo’lsa, aylana radiusini toping. A) 4 B) 10 C) 6 D) 5 12 / 30 y= funksiyaning aniqlanish sohasini toping A) (0,2) B) (-∞;0])v[2;∞) C) (2;∞) D) (-∞;0)v(2;∞) 13 / 30 Ostki asosining yuzi 32π va ustki asosining yuzi 18π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning sirtini toping. A) 56π B) 72π C) 100π D) 96π 14 / 30 Bekzodda 50 so’m va Sobirda 70 so’m pul bor edi. Anvar Bekzodga o’z pulining 10 foizini bergandan so’ng, Bekzod Sobirga pulining yarmini berdi. So’ng Sobir Anvarga pulining 10 foizini berdi. Anvar o’zidagi pullarini hisoblab, pullari dastlabki holdagi puli bilan teng ekanligini bildi. Anvarda qancha pul bo’lgan? A) 375 B) 400 C) 127 D) 100 15 / 30 Tengsizlikni yeching. A) (-3;2) B) (-3;2)v(2;4) C) (2;4) D) (-4;2)v(2;3) 16 / 30 Hisoblang A) 3√3 B) 1 C) √3 D) 2√3 17 / 30 Agar f(x)=4x3-6x2-2x+3x .log3e bo’lsa, u holda ni toping. A) 1 B) √2e C) e D) 3e 18 / 30 Tenglamaning nechta ildizi bor? |x+1|=|2x-1| A) 2 B) 1 C) 3 D) 4 19 / 30 Anvar tub son o’yladi va o’ylagan sonini 5 ga ko’paytirib, 8 ni ayirgan edi, yana tub son hosil bo’ldi. Anvar qanday son o’ylagan? A) aniqlab bo’lmaydi B) 412967 C) 2 D) 374389 20 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 1; 2; 1,5; 1,2 ga teng bo’ladigan barcha to’g’ri to’rtburchaklar sonini toping A) 0 B) 1 C) cheksiz ko’p D) 2 21 / 30 funktsiyaning aniqlanish sohasini toping. A) (1;2) B) (-∞;1]v[2;∞) C) [1;2] D) (-∞;1)v(2;∞) 22 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) 2 B) 4 C) 2√2 D) √2 23 / 30 Radiusi 25 bo’lgan doirada 48 ga teng vatar o’tkazilgan. Doira markazidan shu vatargacha masofani toping. A) 7 B) 10 C) 9 D) 8 24 / 30 Tenglamani yeching. (x+2)+(x+4)+(x+6)+…+(x+100)=2800 A) 7 B) 4 C) 5 D) 3 25 / 30 Agar funksiya berilgan bo’lsa, u holda M=ning qiymatini toping. A) e⁵⁰⁵⁰ B) e⁻⁴⁹⁵⁰ C) e⁻⁵⁰⁵⁰ D) e⁴⁹⁵⁰ 26 / 30 x2-5|x|-6=0 tenglama ildizini toping A) -1;-6 B) ±6 C) -1;6 D) ±;±6 27 / 30 To’g’ri burchakli uchburchakning yuzi 24 ga, katetlaridan biri 6 ga teng bo’lsa, gipotenuzasini toping A) 12 B) √46 C) 11 D) 10 28 / 30 Agar bank qo’yilgan pulga 40% yillik bersa, qo’yilgan 4500 so’m pul bir yildan so’ng qancha bo’ladi? A) 6100 B) 6000 C) 6300 D) 6200 29 / 30 Agar f(x)=ax3-5x2+b va bo’lsa, a ni toping. A) 3 B) 1 C) 2 D) 0 30 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) √3/2 B) 1,5 C) 1 D) √5/2 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz