Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 148 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Agar bank qo’yilgan pulga 40% yillik bersa, qo’yilgan 4500 so’m pul bir yildan so’ng qancha bo’ladi? A) 6300 B) 6000 C) 6100 D) 6200 2 / 30 200 kishidan iborat turistlar guruxida 140 kishi ingliz tilini, 90 kishi nemis tilini va 46 kishi ikkala tilni biladi. Ikkala tilni xam bilmaydigan turistlar necha foizni tashkil qiladi. A) 12 B) 8 C) 4 D) 16 3 / 30 Yuzasi 10 ga teng bo’lgan kvadratning ketma-ket ikki uchidan o’tuvchi aylana chizilgan. Uchinchi uchidan aylanaga urunma o’tkazilgan. Urunma tomondan ikki marta katta bo’lsa, aylana radiusini toping. A) 6 B) 5 C) 4 D) 10 4 / 30 To’g’ri burchakli uchburchakning yuzi 24 ga, katetlaridan biri 6 ga teng bo’lsa, gipotenuzasini toping A) 10 B) 12 C) √46 D) 11 5 / 30 Hisoblang: A) 2 B) 3 C) -1 D) 1 6 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakning perimetri 48 va aylana radiusi 7 ga teng bo‘lsa, u holda kesma uzunligini toping A) 15 B) 30 C) 12 D) 25 7 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 6 B) 4 C) 5 D) 8 8 / 30 To’g’ri to’rtburchakning perimetri 50 ga teng. Bir tomoni boshqa tomonidan 5 ga ko’p. To’g’ri to’rtburchakning yuzini toping. A) 150 B) 50 C) 225 D) 60 9 / 30 Anvar tub son o’yladi va o’ylagan sonini 5 ga ko’paytirib, 8 ni ayirgan edi, yana tub son hosil bo’ldi. Anvar qanday son o’ylagan? A) aniqlab bo’lmaydi B) 2 C) 374389 D) 412967 10 / 30 x(t)=t2+7t-6 qonuniyat bo’yicha harakatlanayotgan moddiy nuqtaning tezligi harakat boshlangandan necha sekund o’tgach 87 m/s ga teng bo’ladi? A) 54 B) 50 C) 40 D) 36 11 / 30 Hisoblang A) 0 B) 1 C) 2 D) -1 12 / 30 bo’lsa ni toping. Bunda funksiya f(x) ga teskari funksiya. A) -10 B) -4 C) -12 D) -14 13 / 30 Tengsizlikni yeching. A) (-3;2)v(2;4) B) (-4;2)v(2;3) C) (2;4) D) (-3;2) 14 / 30 y= funktsiyaning aniqlanish sohasini toping. A) [2;∞) B) (-∞;2) C) (2;∞) D) (-∞;2)v(2;∞) 15 / 30 Hisoblang A) √3 B) √3/2 C) 2 D) 1/2 16 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 10 B) 9 C) 11 D) 12 17 / 30 Fazoda (1;2;3) nuqtalardan o’tuvchi to’g’ri chiziq tenglamasini tuzing. A) 2x+3y+z=0 B) x-1/2=y-2/3=z-3/4 C) -x-y+z=0 D) x=y/3=z/2 18 / 30 Tomoni 6 ga teng bo`lgan teng tomonli uchburchakga tashqi chizilgan doiraning yuzini toping. A) 7 π B) 6 π C) 12π D) 10 π 19 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) √3 B) 1 C) √2 D) 2 20 / 30 Soddalashtiring. (0<m<7) A) 7 B) 7-2m C) 2m-7 D) m 21 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) 4sin2x*cos(cos2x) B) -4sin2x*cos(2cos2x) C) 4sin2x*cos(2cos2x) D) -4sin2x*cos(cos2x) 22 / 30 Tengsizlik nechta butun yechimga ega? A) 1 B) 4 C) 3 D) cheksiz ko’p 23 / 30 a(x+2)=2x+1 tenglama a ning qanday qiymatida yechimga ega emas? A) (-∞;2)v(2;∞) B) (∞;∞) C) (2;∞) D) (-∞;2) 24 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 36 B) 38 C) 32 D) 42 25 / 30 Ag ar tgα=2 bo’lsa, u holda ni hisoblang A) 10/27 B) -10/3 C) -10/27 D) 10/3 26 / 30 “Tutgan balig‘ining og‘irligi qancha?” degan savolga baliqchi: “Baliqning dumi 3 kg, boshi uning dumi hamda tanasi yarmining og‘irligiga teng, tanasi esa boshi va dumining og‘irligiga teng”, deb javob berdi. Baliqning og‘irligini (kg) toping. A) 6 B) 12 C) 3 D) 18 27 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 54 B) 48√3 C) 52√3 D) 108 28 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 47 B) 60 C) 120 D) 18 29 / 30 Agar funksiya berilgan bo’lsa, u holda M=ning qiymatini toping. A) e⁴⁹⁵⁰ B) e⁵⁰⁵⁰ C) e⁻⁴⁹⁵⁰ D) e⁻⁵⁰⁵⁰ 30 / 30 AA1A2A3A4A5A6 muntazam oltiburchakli piramidaning hajmi ga va balandligi 2 ga teng bo‘lsa, u holda AA2A6 kesim yuzini toping. A) √15 B) √5 C) 3 D) 2 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz