Uy » Attestatsiya testlar » Matematika attestatsiya » Matematika attestatsiya №13 Matematika attestatsiya Matematika attestatsiya №13 InfoMaster Iyul 21, 2022 100 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 1 0% 0 12345678910111213141516171819202122232425262728293031323334353637383940 OMAD YOR BO'LSIN! Matematika fanidan attestatsiya savollari №13 DIQQAT! Endi siz o'z bilmingizni sinab ko'rish bilan birga sertifikatga ham ega bo'lishingiz mumkin. Sertifikat olish uchun barcha ma'lumotlarni to'g'ri kiriting! Testda 76% va undan yuqori natija oling va sertifikatni yuklab oling. 1 / 40 1. tengsizlikni yeching. A) 1 B) 2 C) 4 D) 3 2 / 40 2. Uchlari A(4;5;1), B(2;3;0) va C(2;–1;–3) nuqtalarda joylashgan uchburchakning BD medianasi uzunligini toping. A) √3 B) √2 C) 1 D) 2 3 / 40 3. Quyidakilardan qaysi biri juft: 200956+200855 31210+0! 55!+877 222+333+4444 A) 4 B) 3 C) 1 D) 2 4 / 40 4. Burchagi 120° ga teng bo‘lgan doiraviy sektorga ichki doira chizilgan. Berilgan doiraning radiusi R ga teng bo‘lsa, yangi doiraning radiusi topilsin. A) R(√3-√2) B) √3R(2-√3) C) 3R D) 1,5R 5 / 40 5. Agar geometrik progressiyaning umumiy hadi bn= 3·2n bo‘lsa, ni toping. A) 1 B) 4 C) 2 D) 3 6 / 40 6. y = x²+ 2 va y = x² + 3x parabolalar va x=1, x =2 to‘g‘ri chiziqlar bilan chegaralangan shaklni yuzini toping. A) 5/2 B) 5/3 C) 7/3 D) 7/2 7 / 40 7. Tenglamani yeching. A) 3 B) 25 C) 5 D) 9 8 / 40 8. 22022 raqamlar yig‘indisidan hosil bo‘lgan sonning raqamlar yig‘indisidan hosil bo‘lgan sonning raqamlar yig‘indisi hosil qilindi va hokazo. Oxirida bitta raqam qolgan bo‘lsa, shu raqamni toping. A) 0 B) 1 C) 8 D) 7 9 / 40 9. Agar arifmetik progressiyada bo‘lsa, dastlabki 10 ta hadining yig‘indisini toping. A) 160 yoki 317 B) 150 yoki 245 C) 153 yoki 317 D) 155 yoki 245 10 / 40 10. ABCD parallelogramm va ABED toʻrtburchakka aylana ichki chizilgan. Agar DE=8, AB=12 boʻlsa, BEC uchburchakning perimetrini toping. A) 27 B) 24 C) 22 D) 25 11 / 40 11. Soddalashtiring: A) 2√a-2√b B) -2√a C) -2√b D) 2√b-2√a 12 / 40 12. Agar cos4x = acos⁴x+bcos2²x+1 bo'lsa, a+b=? A) -1 B) 1 C) 0 D) 2 13 / 40 13. x ning qanday qiymatida lg2; lg(2x-1); lg(2x+3) arfimetik progressiyani tashkil qiladi? A) 2 B) 3 C) log₅2 D) log₂5 14 / 40 14. To’g’ri burchakli uchburchakning katetlari 5 sm va 12 sm. Uchburchakka ichki chizilgan aylananing radiusini toping. A) 3 sm; B) 4 sm; C) 2 m; D) 2 sm; 15 / 40 15. Quydagi shaklning to’la sirtini ifadolovchi formulani tuzing? A) 2x+3b+4d B) 2bdx+2bd C) 2x(b+d)+2bd D) 2x(b+d) 16 / 40 16. Quydagi to’g’ri to’rt burchak yuzasining eng kichchik qiymatini toping. A) 3 B) 1 C) 2 D) 4 17 / 40 17. f(2x-1)=4x-5 bo’lsa, f-1 (x)=? A) (x-7)/2 B) (x+3)/2 C) (x-2)/3 D) (x-3)/3 18 / 40 18. f(x)=2·tgx funksiyaning x₀=π nuqtadagi hosilasini toping. A) -2 B) 0 C) 2 D) 1 19 / 40 19. Meshdagi suv Sarvarning o'ziga 20 kunga, Behruzga esa 60 kunga yetadi. Meshdagi suv ikkalasiga necha kunga yetadi? A) 15 B) 14 C) 12 D) 16 20 / 40 20. funksiyaga teskari funksiyani toping. A) III B) IV C) I D) II 21 / 40 21. y=6x+18 to’g’ri chiziq bilan chegaralangan soha yuzini toping. A) 27 B) 12 C) 48 D) 18 22 / 40 22. Hisoblang: sin10° •sin50° •sin70° A) 0,25 B) 0 C) 0,125 D) 0,5 23 / 40 23. 2a = 5 va 20b = 125 bo’lsa, a ni b orqali ifodalang. A) 2b/(3-b) B) 3b/(2+b) C) (3-b)/2b D) b/(3-b) 24 / 40 24. Agar f(x)=x3─5x2+2x+a va f "(2)=f(2) bo’lsa, a ning qiymatini toping. A) 5 B) 12 C) 6 D) 10 25 / 40 25. Aniqmas integralni hisoblang. A) lnx+c B) ln(lnx) C) ln(lnx)+c D) xlnx-x+c 26 / 40 26. ifoda x ning nechta qiymatida ma’noga ega emas? A) 4√2/9 B) 3 C) 1 D) 2 27 / 40 27. Teng yonli uchburchakning asosi yon tomonidan 15 ga ortiq uchburchakning asosiga tushirilgan balandligi 15 ga teng bo’lsa , uning asosini toping. A) 42 B) 36 C) 40 D) 20 28 / 40 28. Silindr yon sirtining yoyilmasi tomoni b ga teng kvadratdan iborat. Silindir to’la sirtini toping. A) b²-b²/2π B) b²/2π C) b²-2π D) b²+b²/2π 29 / 40 29. sin (2arccos1/3) ni hisoblang. A) 2/3 B) 2/9 C) 4√4/9 D) 4√2/9 30 / 40 30. y=arcsin(-x-1) funksiyani aniqlanish sohasini toping. A) -2≤x≤0 B) 0≤x≤2 C) -2≤x≤2 D) 1≤x≤2 31 / 40 31. sin²α+ sin²β= 1 tenglamada 0<α<π/2 va 0<β<π/2 bo’lsa, α²+π²/2+β²+2αβ ni hisoblang. A) π²/4 B) 3π²/4 C) 2π² D) α² 32 / 40 32. Ikki natural sonning kvadratlarining o'rta arifmetigi 34 ga, o'rta geometrigi esa 8 ga teng. Shu sonlarning yig'indisini yarmini toping toping. A) 9 B) 14 C) 6 D) 7 33 / 40 33. Agar ln(ab)=2x ba ln(a/b)=2y bo'lsa, a=? A) II B) III C) IV D) I 34 / 40 34. sin(2arctg0,75) ni hisoblang A) 24/25 B) 11/15 C) 12/15 D) 22/25 35 / 40 35. f(x+10)=f(x)·f(x-10)-x f(0)=1/2 va f(10)=30 bo’lsa, f(20)=? A) 5 B) 6 C) 2 D) 30 36 / 40 36. 1,2,3,4,2,3,1,4,5,3,2,12,3,4,2,1,3,2,1,4,3,2,1,2,3,4,2,1,2,3. Chastotasi eng kata bo’lgan songa 3 ni qo’shsak achiqsa. a²= ? A) 16 B) 25 C) 36 D) 49 37 / 40 37. Konus o’q kesimi yuzi 4√3 ga teng muntazam uchburchakdan iborat. Konus to’la sirtini toping? A) 18π B) 6π C) 24π D) 12π 38 / 40 38. Uchburchakning b va c ga teng tomonlari orasidagi burchagi 300 ga teng. Uchburchakning uchunchi tomoni 12 ga teng bo'lsa hamda uning tomonlari c2 = b2 + 12b + 144 shartni qanoatlantirsa, c ning qiymatini toping. A) 12 B) 24√3 C) 6√3 D) 12√3 39 / 40 39. Agar tg(x+y)=3 va tg(x-y)=2 bo’lsa tg2x+5 ning yarmini toping A) 5 B) -1 C) 1 D) 2 40 / 40 40. y₁ va y₂ y² + my + n = 0 tenglamaning ildizlari, y₁ va y₂ ning har birini 4 taga orttirib, ildizlari hosil bo'lgan sonlarga teng kvadrat tenglama tuzildi. Agar uning ozod hadi n -24 (n dastlabki tenglamaning ozod hadi) ga teng bo'lsa, m nechaga teng? A) 9 B) 12 C) 10 D) 11 0% Testni qayta ishga tushiring Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz
Istaklar ro'yxatiga qo'shildiIstaklar ro'yxatidan olib tashlandi 13 Matematika fanidan attestatsiya savollari №16