Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 153 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) 1 B) 2 C) √3 D) √2 2 / 30 Bir vaqtning o’zida 9,13, . . . ,405 va 15,21, . . . ,255 ketma–ketliklarning hadlari bo’lgan sonlarning eng kattasi va eng kichigining ayirmasini toping A) 150 B) 147 C) 228 D) 231 3 / 30 a=sin 1; b=sin 2; c=sin 3; d=sin 4 va e=sin 5 sonlarni kamayish tartibida joylashtiring. A) b>c>a>d>e B) a>b>c>d>e C) e>b>a>d>c D) b>a>c>d>e 4 / 30 To‘g‘ri to‘rtburchakning eni 25% ga orttirildi, bo‘yi esa 25% ga kamaytirildi. Natijada uning yuzi qanday o‘zgardi? A) 2,5% ga ortadi B) 6,25% ga ortadi C) 6,25% ga kamayadi D) o‘zgarmaydi 5 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5, 6 ga teng bo’lsa, u holda AB tomon uzunligini toping. A) √37 B) √7 C) 2 D) bunday to’gri to’rtburchak mavjud emas 6 / 30 Tengsizlik nechta butun yechimga ega? A) 3 B) 4 C) cheksiz ko’p D) 1 7 / 30 |x2-5x-14|+20≥5|x+2|+4|x-7| tengsizlikni yeching. A) [-2;4]v{6} B) [1;6] C) [2;4]v{2}v[3;∞) D) (-∞;-6]v{2}v[12;∞) 8 / 30 y= funktsiyaning aniqlanish sohasini toping. A) (2;∞) B) (-∞;2) C) [2;∞) D) (-∞;2)v(2;∞) 9 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 10 B) 50 C) 2 yoki 50 D) 10 yoki 50 10 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 9 B) 11 C) 12 D) 10 11 / 30 Tengsizlikni yeching. A) (-4;2)v(2;3) B) (2;4) C) (-3;2) D) (-3;2)v(2;4) 12 / 30 sistema yagona yechimga ega bo’ladigan a ning barcha qiymatlari to’plamini toping. A) {-1;3} B) {-1;2} C) {2;4} D) {1;2} 13 / 30 Agar va b-a=4 bo’lsa, a+b ni toping. A) 3,5 B) 3 C) 2 D) 4 14 / 30 tenglamalar sistemasini yeching A) (4;3) B) (3;–4) C) (4;–3) D) (–4;3) 15 / 30 Quyidagi va to’g’ri chiziqlarning o’zaro holatini aniqlang. A) o’zaro perpendikulyar B) o’zaro kesishadi C) o’zaro parallel D) ayqash to’gri chiziqlar 16 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) √5/2 B) 1 C) √3/2 D) 1,5 17 / 30 Muntazam uchburchakli piramidaning yon qirrasi asos tekisligi bilan 45o li burchak tashkil etgan bo‘lsa, u holda piramidaning yon sirti yuzining uning asosi yuziga nisbatini toping. A) 2√5 B) 2√3 C) 3√3 D) 4 18 / 30 sistemada xy ning qiymatini toping. A) 64 B) 75 C) 60 D) 80 19 / 30 Ifodani soddalashtiring. 2 cos55o.cos40o.sin55o+cos110o.sin40o A) 1 B) 0 C) 0,5 D) 2 20 / 30 Quyidagilardan qaysi biri barcha lar uchun ma’noga ega (aniqlangan)? A) ²ᴷ⁺⁴v2k+1/k²+1 B) (512-1/2⁻⁹)° C) ⁴ᴷ⁺³√-√2k+1 D) 4k+1/1/8:7-1/56 21 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (-7; 1) B) (-7;-1) C) (7; 1) D) (4; -3) 22 / 30 Tenglamani yeching. |x2-11x+10|=x2-11x+10 A) (-∞;1]v[10;∞) B) [10;∞) C) 1; 10 D) (-∞;1] 23 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²(1+2cosα/4sin²) B) πa²(1-2sinα/4sin²) C) πa²/4cos²α D) πa²/4sin²α 24 / 30 tenglamani yeching. A) 2018 B) 2017 C) 0 D) 2019 25 / 30 ABC muntazam uchburchak ichidan ixtiyoriy P nuqta olinib, undan BC, CA va AB tomonlarga mos ravishda PD, PE va PF perpendikulyarlar tushirilgan bo’lsa,ni toping. A) 1 B) 0,5 C) 1/√2 D) 1/√3 26 / 30 AA1A2A3A4A5A6 muntazam oltiburchakli piramidaning hajmi ga va balandligi 2 ga teng bo‘lsa, u holda AA2A6 kesim yuzini toping. A) √15 B) √5 C) 3 D) 2 27 / 30 x2-5|x|-6=0 tenglama ildizini toping A) ±6 B) ±;±6 C) -1;-6 D) -1;6 28 / 30 Hisoblang A) 3√3 B) 2√3 C) √3 D) 1 29 / 30 To’g’ri burchakli uchburchakning yuzi 24 ga, katetlaridan biri 6 ga teng bo’lsa, gipotenuzasini toping A) 10 B) 11 C) 12 D) √46 30 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 72° B) 90° C) 60° D) 30° 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz