Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 127 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 3 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 2 yoki 50 B) 10 yoki 50 C) 50 D) 10 2 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²/4cos²α B) πa²(1-2sinα/4sin²) C) πa²/4sin²α D) πa²(1+2cosα/4sin²) 3 / 30 Fazoda (1;2;3) nuqtalardan o’tuvchi to’g’ri chiziq tenglamasini tuzing. A) x=y/3=z/2 B) -x-y+z=0 C) 2x+3y+z=0 D) x-1/2=y-2/3=z-3/4 4 / 30 Quyidagi va to’g’ri chiziqlarning o’zaro holatini aniqlang. A) ayqash to’gri chiziqlar B) o’zaro kesishadi C) o’zaro perpendikulyar D) o’zaro parallel 5 / 30 Tomoni 6 ga teng bo`lgan teng tomonli uchburchakga tashqi chizilgan doiraning yuzini toping. A) 6 π B) 12π C) 10 π D) 7 π 6 / 30 ifodaning qiymatini toping. A) 0,5 B) -2 C) -0,5 D) 0 7 / 30 200 kishidan iborat turistlar guruxida 140 kishi ingliz tilini, 90 kishi nemis tilini va 46 kishi ikkala tilni biladi. Ikkala tilni xam bilmaydigan turistlar necha foizni tashkil qiladi. A) 4 B) 12 C) 8 D) 16 8 / 30 Tenglamaning ildizlari yig`indisini toping. A) 3 B) 4 C) 6 D) 5 9 / 30 Agar f(x)=4x3-6x2-2x+3x .log3e bo’lsa, u holda ni toping. A) 3e B) e C) 1 D) √2e 10 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 54 B) 48√3 C) 108 D) 52√3 11 / 30 Hisoblang A) √3/2 B) √3 C) 2 D) 1/2 12 / 30 Soddalashtiring. A) 2019 B) 2018a/a+1 C) a+1 D) 2018 13 / 30 Tenglamani yeching. |x2-11x+10|=x2-11x+10 A) (-∞;1]v[10;∞) B) [10;∞) C) 1; 10 D) (-∞;1] 14 / 30 Agar funksiya berilgan bo’lsa, u holda M=ning qiymatini toping. A) e⁻⁴⁹⁵⁰ B) e⁵⁰⁵⁰ C) e⁻⁵⁰⁵⁰ D) e⁴⁹⁵⁰ 15 / 30 Agar f(x)=ax3-5x2+b va bo’lsa, a ni toping. A) 1 B) 2 C) 0 D) 3 16 / 30 sistema a ning qanday qiymatida cheksiz ko’p yechimga ega? A) 6 B) (-∞;6])v[6;∞) C) (2;∞) D) (-∞;6) 17 / 30 Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY uchburchak qanday uchburchak bo‘ladi? A) to`g`ri burchakli uchburchak B) muntazam uchburchak C) teng yonli uchburchak D) ixtiyoriy uchburchak 18 / 30 Agar arctga+ arctgb + arctgc= bo’lsa, a+b+c ni toping. A) ab/c B) abc C) 1 D) ab 19 / 30 n ning qanday qiymatida ushbu 81 .82 .83 .….8n=51222 tenglik o’rinli bo’ladi? A) 10 B) 14 C) 11 D) 12 20 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusidan katta bo’lgan uchburchaklar sonini toping. A) 1 B) 2019 C) 0 D) cheksiz ko’p 21 / 30 funktsiyaning aniqlanish sohasini toping. A) (-∞;1]v[2;∞) B) (1;2) C) (-∞;1)v(2;∞) D) [1;2] 22 / 30 bo’lsa ni toping. Bunda funksiya f(x) ga teskari funksiya. A) -10 B) -14 C) -4 D) -12 23 / 30 tenglamalar sistemasini yeching A) (3;–4) B) (4;–3) C) (4;3) D) (–4;3) 24 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) √5/2 B) 1 C) √3/2 D) 1,5 25 / 30 7 sonini uchta natural sonlar yig’indisi ko’rinishida necha xil usulda yozish mumkin? A) 3 B) 6 C) 4 D) 5 26 / 30 Tengsizlikni yeching. A) (-1/³ √2 ;0) B) to'g'ri javob yo'q C) (0;+∞) D) 0 27 / 30 Parallelogrammning tomonlari nisbati 3:5 kabi. Agar parallelogrmmning perimetri 48 ga burchaklaridan biri 1200 ga teng bo’lsa, uning yuzini toping. A) 67,5√3 B) 135√3/4 C) 67,5 D) 48√3 28 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 13 ga, katetlaridan biri 52 ga teng. Gipotenuzaga tushirilgan balandlik uzunligini toping A) 6 B) 5 C) 4 D) 7 29 / 30 Bir vaqtning o’zida 9,13, . . . ,405 va 15,21, . . . ,255 ketma–ketliklarning hadlari bo’lgan sonlarning eng kattasi va eng kichigining ayirmasini toping A) 150 B) 228 C) 147 D) 231 30 / 30 |x2-5x-14|+20≥5|x+2|+4|x-7| tengsizlikni yeching. A) (-∞;-6]v{2}v[12;∞) B) [2;4]v{2}v[3;∞) C) [-2;4]v{6} D) [1;6] 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz