Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 164 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 bo’lsa ni toping. Bunda funksiya f(x) ga teskari funksiya. A) -4 B) -10 C) -14 D) -12 2 / 30 Tomoni 12 ga teng bo`lgan teng tomonli uchburchakga ichki chizilgan aylana uzunligini toping. A) 3π B) 2√3π C) 12π D) 4√3π 3 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 108 B) 48 C) 52 D) 54 4 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (4; -3) B) (-7; 1) C) (-7;-1) D) (7; 1) 5 / 30 tenglamalar sistemasini yeching A) (–4;3) B) (4;3) C) (4;–3) D) (3;–4) 6 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 2222222175 B) 222222222222 C) 22222222220 D) 222220175 7 / 30 a(x+2)=2x+1 tenglama a ning qanday qiymatida yechimga ega emas? A) (∞;∞) B) (-∞;2) C) (-∞;2)v(2;∞) D) (2;∞) 8 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 4π/3 B) 3π/4 C) 3π/2 D) 2π/3 9 / 30 x2-5|x|-6=0 tenglama ildizini toping A) -1;6 B) -1;-6 C) ±6 D) ±;±6 10 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 108 B) 48√3 C) 52√3 D) 54 11 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 1900 B) 2000 C) 2200 D) 2100 12 / 30 Teng yonli uchburchakning tomonlari 5, 5 va 6 ga teng. Bu uchburchakning bissektiritsalari va medianalari kesishgan nuqtalar A) 1 B) 1/2 C) 1/6 D) 1,2 13 / 30 O’qishni bilmaydigan bola alifbening A,A,A, N,N, S- 6 ta harflarini ixtiyoriy ravishda terib chiqadi. Bunda ANANAS so’zining hosil bo’lish ehtimolini toping. A) 5/720 B) 1/60 C) 5/24 D) 6/720 14 / 30 integralning qiymatini toping. A) 0 B) π/2 C) π/4 D) -π/2 15 / 30 |x2-5x-14|+20≥5|x+2|+4|x-7| tengsizlikni yeching. A) [1;6] B) [-2;4]v{6} C) [2;4]v{2}v[3;∞) D) (-∞;-6]v{2}v[12;∞) 16 / 30 y= funktsiyaning aniqlanish sohasini toping. A) (-∞;2)v(2;∞) B) (-∞;2) C) [2;∞) D) (2;∞) 17 / 30 Hisoblang. A) 2/17 B) 2/34 C) 15/34 D) 17/34 18 / 30 Rombning balandligi 8 ga dioganallarining ko’paytmasi 80 ga teng. Rombning perimetrini toping A) 24 B) 16 C) 32 D) 20 19 / 30 Agar va b-a=4 bo’lsa, a+b ni toping. A) 3,5 B) 3 C) 4 D) 2 20 / 30 Tomoni 2 ga teng kvadratga tashqi chizilgan aylana uzunligini toping. A) 3π B) 2π C) 4π D) 2π/3 21 / 30 Quyidagi 2x-y+3z=2018 va x+5y+z=2019 tekisliklarning holatini aniqlang. A) aniqlab bo’lmaydi B) o’zaro perpendikulyar C) ayqash D) o’zaro parallel 22 / 30 To’g’ri to’rtburchakning perimetri 50 ga teng. Bir tomoni boshqa tomonidan 5 ga ko’p. To’g’ri to’rtburchakning yuzini toping. A) 150 B) 60 C) 225 D) 50 23 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 2 yoki 50 B) 10 yoki 50 C) 50 D) 10 24 / 30 sin2x-cos2x=1 tenglama [-π; 2π] oraliqda nechta ildizga ega? A) 10 B) 9 C) 7 D) 6 25 / 30 Tomoni 6 ga teng bo`lgan teng tomonli uchburchakga tashqi chizilgan doiraning yuzini toping. A) 7 π B) 10 π C) 12π D) 6 π 26 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusidan katta bo’lgan uchburchaklar sonini toping. A) 0 B) 1 C) 2019 D) cheksiz ko’p 27 / 30 Tenglamaning nechta ildizi bor? |x+1|=|2x-1| A) 1 B) 2 C) 4 D) 3 28 / 30 y= funksiyaning aniqlanish sohasini toping A) (2;∞) B) (0,2) C) (-∞;0)v(2;∞) D) (-∞;0])v[2;∞) 29 / 30 Ushbu funksiyaning boshlang’ich funksiyasini toping. A) ln(|x+4+|x-1|)+c B) ln|x-1/x+4|+c C) ln(|x+4*|x-1|)+c D) ln|x+4/x-1|+c 30 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4760 B) 4720 C) 4716 D) 4680 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz