Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 121 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 1 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Quyidagi 2x-y+3z=2018 va x+5y+z=2019 tekisliklarning holatini aniqlang. A) o’zaro perpendikulyar B) ayqash C) o’zaro parallel D) aniqlab bo’lmaydi 2 / 30 a ning 7x-a-13=(a-5)(x+7) tenglama yechimga ega bo’lmaydigan qiymatining natural bo’luvchilar sonini toping. A) 12 B) 6 C) 8 D) 4 3 / 30 (-3;4) nuqtaga absissa, ordinata o’qlariga va koordinata boshiga nisbatan simmetrik bo’lgan nuqtalarni tutashtirishdan hosil bo’lgan uchburchakning eng kata tomonini toping. A) 14 B) 24 C) 10 D) 12 4 / 30 Hisoblang. A) 15/34 B) 2/34 C) 17/34 D) 2/17 5 / 30 sonning oxirgi raqamini toping. A) 4 B) 6 C) 2 D) 8 6 / 30 ABC muntazam uchburchak ichidan ixtiyoriy P nuqta olinib, undan BC, CA va AB tomonlarga mos ravishda PD, PE va PF perpendikulyarlar tushirilgan bo’lsa,ni toping. A) 1/√2 B) 0,5 C) 1 D) 1/√3 7 / 30 Fazoda (1;2;3) nuqtalardan o’tuvchi to’g’ri chiziq tenglamasini tuzing. A) -x-y+z=0 B) 2x+3y+z=0 C) x-1/2=y-2/3=z-3/4 D) x=y/3=z/2 8 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 4π/3 B) 3π/2 C) 3π/4 D) 2π/3 9 / 30 Bir vaqtning o’zida 9,13, . . . ,405 va 15,21, . . . ,255 ketma–ketliklarning hadlari bo’lgan sonlarning eng kattasi va eng kichigining ayirmasini toping A) 228 B) 150 C) 231 D) 147 10 / 30 ABCD kvadrat ichidan olingan O nuqtadan A, B, C uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5 ga teng bo’lsa, u holda OD kesma uzunligini toping. A) 6 B) 3 C) √37 D) √32 11 / 30 Tengsizlikni yeching. A) 0 B) (0;+∞) C) to'g'ri javob yo'q D) (-1/³ √2 ;0) 12 / 30 Bekzodda 50 so’m va Sobirda 70 so’m pul bor edi. Anvar Bekzodga o’z pulining 10 foizini bergandan so’ng, Bekzod Sobirga pulining yarmini berdi. So’ng Sobir Anvarga pulining 10 foizini berdi. Anvar o’zidagi pullarini hisoblab, pullari dastlabki holdagi puli bilan teng ekanligini bildi. Anvarda qancha pul bo’lgan? A) 400 B) 100 C) 375 D) 127 13 / 30 Tenglamani yeching. |x2-11x+10|=x2-11x+10 A) 1; 10 B) (-∞;1] C) (-∞;1]v[10;∞) D) [10;∞) 14 / 30 Soddalashtiring. A) a+1 B) 2019 C) 2018a/a+1 D) 2018 15 / 30 Agar bank qo’yilgan pulga 40% yillik bersa, qo’yilgan 4500 so’m pul bir yildan so’ng qancha bo’ladi? A) 6300 B) 6100 C) 6000 D) 6200 16 / 30 |x2-5x-14|+20≥5|x+2|+4|x-7| tengsizlikni yeching. A) (-∞;-6]v{2}v[12;∞) B) [-2;4]v{6} C) [1;6] D) [2;4]v{2}v[3;∞) 17 / 30 Muntazam uchburchakli piramidaning yon qirrasi asos tekisligi bilan 45o li burchak tashkil etgan bo‘lsa, u holda piramidaning yon sirti yuzining uning asosi yuziga nisbatini toping. A) 2√3 B) 2√5 C) 3√3 D) 4 18 / 30 Rombning balandligi 8 ga dioganallarining ko’paytmasi 80 ga teng. Rombning perimetrini toping A) 24 B) 16 C) 32 D) 20 19 / 30 sistemada xy ning qiymatini toping. A) 60 B) 75 C) 80 D) 64 20 / 30 Agar arctga+ arctgb + arctgc= bo’lsa, a+b+c ni toping. A) ab B) 1 C) ab/c D) abc 21 / 30 Tenglamaning nechta ildizi bor? |x+1|=|2x-1| A) 1 B) 3 C) 4 D) 2 22 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakning perimetri 48 va aylana radiusi 7 ga teng bo‘lsa, u holda kesma uzunligini toping A) 12 B) 25 C) 30 D) 15 23 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 222220175 B) 2222222175 C) 222222222222 D) 22222222220 24 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 52 B) 54 C) 108 D) 48 25 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) 64√2π/3 B) (5√3+3)π/3 C) 3√2π/4 D) 8√2π/5 26 / 30 Tomoni 2 ga teng kvadratga tashqi chizilgan aylana uzunligini toping. A) 2π/3 B) 2π C) 3π D) 4π 27 / 30 To’g’ri to’rtburchakning perimetri 50 ga teng. Bir tomoni boshqa tomonidan 5 ga ko’p. To’g’ri to’rtburchakning yuzini toping. A) 60 B) 225 C) 50 D) 150 28 / 30 a=sin 1; b=sin 2; c=sin 3; d=sin 4 va e=sin 5 sonlarni kamayish tartibida joylashtiring. A) a>b>c>d>e B) e>b>a>d>c C) b>c>a>d>e D) b>a>c>d>e 29 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 54 B) 108 C) 48√3 D) 52√3 30 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 4 B) 3 C) 1 D) 2 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz