Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 129 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 4 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 A) 1 B) √6 C) 0 D) 2 2 / 30 a ning qanday qiymatlarida ushbu 7x-a-13=(a-5)(x+7) tenglama yagona yechimga ega A) a≠5 B) a ning bunday qiymati yo’q C) a≠12 D) a=12 3 / 30 O’qishni bilmaydigan bola alifbening A,A,A, N,N, S- 6 ta harflarini ixtiyoriy ravishda terib chiqadi. Bunda ANANAS so’zining hosil bo’lish ehtimolini toping. A) 5/720 B) 6/720 C) 5/24 D) 1/60 4 / 30 sistema yagona yechimga ega bo’ladigan a ning barcha qiymatlari to’plamini toping. A) {-1;3} B) {1;2} C) {-1;2} D) {2;4} 5 / 30 a ning 7x-a-13=(a-5)(x+7) tenglama yechimga ega bo’lmaydigan qiymatining natural bo’luvchilar sonini toping. A) 12 B) 6 C) 4 D) 8 6 / 30 Quyidagi va to’g’ri chiziqlarning o’zaro holatini aniqlang. A) o’zaro parallel B) o’zaro perpendikulyar C) ayqash to’gri chiziqlar D) o’zaro kesishadi 7 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (-7;-1) B) (4; -3) C) (7; 1) D) (-7; 1) 8 / 30 sistemadan x+y+z ning qiymatini toping. A) 150/41 B) 139/41 C) 140/41 D) -139/41 9 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping. A) 18 B) 14 C) 17 D) 16 10 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 6 B) 8 C) 4 D) 5 11 / 30 Bir vaqtning o’zida 9,13, . . . ,405 va 15,21, . . . ,255 ketma–ketliklarning hadlari bo’lgan sonlarning eng kattasi va eng kichigining ayirmasini toping A) 231 B) 150 C) 147 D) 228 12 / 30 (-3;4) nuqtaga absissa, ordinata o’qlariga va koordinata boshiga nisbatan simmetrik bo’lgan nuqtalarni tutashtirishdan hosil bo’lgan uchburchakning eng kata tomonini toping. A) 24 B) 14 C) 10 D) 12 13 / 30 Agar bank qo`yilgan pulga 40% yillik foyda bersa, qo`yilgan 5000 so`m pul bir yildan keyin qancha bo`ladi ? A) 7000 B) 6200 C) 6900 D) 7200 14 / 30 Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY uchburchak qanday uchburchak bo‘ladi? A) ixtiyoriy uchburchak B) teng yonli uchburchak C) to`g`ri burchakli uchburchak D) muntazam uchburchak 15 / 30 Radiusi 25 bo’lgan doirada 48 ga teng vatar o’tkazilgan. Doira markazidan shu vatargacha masofani toping. A) 10 B) 7 C) 9 D) 8 16 / 30 Radiuslari orasidagi burchagi 36o va radiusi 5 ga teng bo`lgan sektor yoyining uzunligini toping. A) 2π/3 B) π/2 C) 2π D) π 17 / 30 Teng yonli trpetsiyaning asoslari 15 va 25 ga balandligi esa 15 ga teng trapetsiyaning dioganalini toping A) 25 B) 28 C) 20 D) 30 18 / 30 Tengsizlik nechta butun yechimga ega? A) 4 B) cheksiz ko’p C) 3 D) 1 19 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) 1 B) √3 C) 2 D) √2 20 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 38 B) 42 C) 32 D) 36 21 / 30 “Tutgan balig‘ining og‘irligi qancha?” degan savolga baliqchi: “Baliqning dumi 3 kg, boshi uning dumi hamda tanasi yarmining og‘irligiga teng, tanasi esa boshi va dumining og‘irligiga teng”, deb javob berdi. Baliqning og‘irligini (kg) toping. A) 3 B) 6 C) 12 D) 18 22 / 30 Hisoblang: A) 3 B) 2 C) 1 D) -1 23 / 30 Tomoni 12 ga teng bo`lgan teng tomonli uchburchakga ichki chizilgan aylana uzunligini toping. A) 4√3π B) 3π C) 2√3π D) 12π 24 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusidan katta bo’lgan uchburchaklar sonini toping. A) 2019 B) 0 C) cheksiz ko’p D) 1 25 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 22222222220 B) 2222222175 C) 222222222222 D) 222220175 26 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) 4sin2x*cos(2cos2x) B) -4sin2x*cos(cos2x) C) 4sin2x*cos(cos2x) D) -4sin2x*cos(2cos2x) 27 / 30 tenglamalar sistemasini yeching A) (-4;4) B) (4;4) C) (4;–4) D) (-4;-4) 28 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) √3/2 B) √5/2 C) 1 D) 1,5 29 / 30 Tenglamaning nechta ildizi bor? |x+1|=|2x-1| A) 3 B) 1 C) 2 D) 4 30 / 30 Qaysi javobda faqat juft funksiyalar ko’rsatilgan? A) 1, 3 B) 3, 4 C) 1,4 D) 2, 3 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz