Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 134 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 4 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (-7;-1) B) (-7; 1) C) (7; 1) D) (4; -3) 2 / 30 Quyidagi 2x-y+3z=2018 va x+5y+z=2019 tekisliklarning holatini aniqlang. A) ayqash B) o’zaro perpendikulyar C) aniqlab bo’lmaydi D) o’zaro parallel 3 / 30 a(x+2)=2x+1 tenglama a ning qanday qiymatida yechimga ega emas? A) (2;∞) B) (-∞;2) C) (-∞;2)v(2;∞) D) (∞;∞) 4 / 30 funktsiyaning aniqlanish sohasini toping. A) (-∞;1]v[2;∞) B) (1;2) C) (-∞;1)v(2;∞) D) [1;2] 5 / 30 Tenglamaning ildizlari yig`indisini toping. A) 5 B) 6 C) 3 D) 4 6 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²/4sin²α B) πa²/4cos²α C) πa²(1-2sinα/4sin²) D) πa²(1+2cosα/4sin²) 7 / 30 Agar f(x)=4x3-6x2-2x+3x .log3e bo’lsa, u holda ni toping. A) e B) 1 C) 3e D) √2e 8 / 30 sistemadan x+y ning qiymatini toping. A) 35/4 B) 12 C) 6 D) -12 9 / 30 Agar bank qo`yilgan pulga 40% yillik foyda bersa, qo`yilgan 5000 so`m pul bir yildan keyin qancha bo`ladi ? A) 6200 B) 6900 C) 7000 D) 7200 10 / 30 Bekzodda 50 so’m va Sobirda 70 so’m pul bor edi. Anvar Bekzodga o’z pulining 10 foizini bergandan so’ng, Bekzod Sobirga pulining yarmini berdi. So’ng Sobir Anvarga pulining 10 foizini berdi. Anvar o’zidagi pullarini hisoblab, pullari dastlabki holdagi puli bilan teng ekanligini bildi. Anvarda qancha pul bo’lgan? A) 375 B) 127 C) 100 D) 400 11 / 30 Ushbu arifmetik progressiyaning manfiy hadlari yig’indisini toping. A) -1 B) -0,75 C) -0,25 D) -0,5 12 / 30 a=sin 1; b=sin 2; c=sin 3; d=sin 4 va e=sin 5 sonlarni kamayish tartibida joylashtiring. A) a>b>c>d>e B) b>c>a>d>e C) b>a>c>d>e D) e>b>a>d>c 13 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 90° B) 72° C) 30° D) 60° 14 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 108 B) 52√3 C) 54 D) 48√3 15 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 3 B) 1 C) 4 D) 2 16 / 30 Fazoda (1;2;3) nuqtalardan o’tuvchi to’g’ri chiziq tenglamasini tuzing. A) x=y/3=z/2 B) -x-y+z=0 C) 2x+3y+z=0 D) x-1/2=y-2/3=z-3/4 17 / 30 A) 1 B) 0 C) √6 D) 2 18 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 2π/3 B) 4π/3 C) 3π/4 D) 3π/2 19 / 30 Teng yonli uchburchakning tomonlari 5, 5 va 6 ga teng. Bu uchburchakning bissektiritsalari va medianalari kesishgan nuqtalar A) 1 B) 1/2 C) 1/6 D) 1,2 20 / 30 Ushbu funksiyaning boshlang’ich funksiyasini toping. A) ln(|x+4*|x-1|)+c B) ln(|x+4+|x-1|)+c C) ln|x+4/x-1|+c D) ln|x-1/x+4|+c 21 / 30 m ning qanday eng katta butun qiymatida y=2x-mx-5+m funksiyaning grafigi 1,3,4 –choraklarda yotadi? A) 5 B) 1 C) 3 D) 2 22 / 30 bo’lsa, ni x orqali ifodalang. A) 2/x B) 25/x C) 2-x D) x/25 23 / 30 Parallelogrammning tomonlari nisbati 3:5 kabi. Agar parallelogrmmning perimetri 48 ga burchaklaridan biri 1200 ga teng bo’lsa, uning yuzini toping. A) 135√3/4 B) 67,5 C) 48√3 D) 67,5√3 24 / 30 tenglamalar sistemasini yeching A) (-4;4) B) (-4;-4) C) (4;–4) D) (4;4) 25 / 30 integralning qiymatini toping. A) 0 B) π/2 C) -π/2 D) π/4 26 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) √2 B) 2 C) 4 D) 2√2 27 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 222220175 B) 222222222222 C) 22222222220 D) 2222222175 28 / 30 n ning qanday qiymatida ushbu 81 .82 .83 .….8n=51222 tenglik o’rinli bo’ladi? A) 11 B) 12 C) 10 D) 14 29 / 30 y= funktsiyaning aniqlanish sohasini toping. A) [2;∞) B) (2;∞) C) (-∞;2)v(2;∞) D) (-∞;2) 30 / 30 Hisoblang A) 1/2 B) √3/2 C) √3 D) 2 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz