Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 150 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 2√2/3 B) 5√3+3/3 C) 3√2+2/4 D) 3√3+1/5 2 / 30 Tengsizlik nechta butun yechimga ega? A) 3 B) 4 C) cheksiz ko’p D) 1 3 / 30 A) 0 B) √6 C) 2 D) 1 4 / 30 tenglamani yeching. A) 2019 B) 2017 C) 0 D) 2018 5 / 30 Soat 3:37 bo’lganda minut va soat millari orasidagi burchakni toping. A) 100° B) 113,5° C) 112,5° D) 113° 6 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) √2 B) 2 C) √3 D) 1 7 / 30 “Tutgan balig‘ining og‘irligi qancha?” degan savolga baliqchi: “Baliqning dumi 3 kg, boshi uning dumi hamda tanasi yarmining og‘irligiga teng, tanasi esa boshi va dumining og‘irligiga teng”, deb javob berdi. Baliqning og‘irligini (kg) toping. A) 12 B) 6 C) 3 D) 18 8 / 30 integralning qiymatini toping. A) 0 B) π/2 C) -π/2 D) π/4 9 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 13 ga, katetlaridan biri 52 ga teng. Gipotenuzaga tushirilgan balandlik uzunligini toping A) 7 B) 5 C) 4 D) 6 10 / 30 Tengsizlikni yeching. A) 0 B) to'g'ri javob yo'q C) (0;+∞) D) (-1/³ √2 ;0) 11 / 30 Bog’bon uch kun davomida o’nta daraxt ko’chati o’tqazishi lozim. Agar bog’bon bir kunda eng kamida bitta ko’chat o’tqazadigan bo’lsa, u shu ishni kunlar bo’yicha necha xil usul bilan taqsimlashi mumkin? A) 30 B) 25 C) 36 D) 32 12 / 30 Ostki asosining yuzi 32π va ustki asosining yuzi 18π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning sirtini toping. A) 100π B) 96π C) 56π D) 72π 13 / 30 Agar bank qo`yilgan pulga 40% yillik foyda bersa, qo`yilgan 5000 so`m pul bir yildan keyin qancha bo`ladi ? A) 6900 B) 7200 C) 7000 D) 6200 14 / 30 Anvar tub son o’yladi va o’ylagan sonini 5 ga ko’paytirib, 8 ni ayirgan edi, yana tub son hosil bo’ldi. Anvar qanday son o’ylagan? A) 412967 B) 374389 C) 2 D) aniqlab bo’lmaydi 15 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) lg(ln x) B) ln(lg x) C) lg(lg x) D) ln(ln x) 16 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 3 B) 4 C) 1 D) 2 17 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (4; -3) B) (-7;-1) C) (-7; 1) D) (7; 1) 18 / 30 Tenglamani yeching. |x2-11x+10|=x2-11x+10 A) 1; 10 B) [10;∞) C) (-∞;1]v[10;∞) D) (-∞;1] 19 / 30 Quyidagi 2x-y+3z=2018 va x+5y+z=2019 tekisliklarning holatini aniqlang. A) ayqash B) aniqlab bo’lmaydi C) o’zaro perpendikulyar D) o’zaro parallel 20 / 30 To‘g‘ri to‘rtburchakning eni 25% ga orttirildi, bo‘yi esa 25% ga kamaytirildi. Natijada uning yuzi qanday o‘zgardi? A) 6,25% ga ortadi B) 6,25% ga kamayadi C) 2,5% ga ortadi D) o‘zgarmaydi 21 / 30 Tenglamaning ildizlari yig`indisini toping. A) 6 B) 5 C) 3 D) 4 22 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) 4sin2x*cos(cos2x) B) -4sin2x*cos(cos2x) C) -4sin2x*cos(2cos2x) D) 4sin2x*cos(2cos2x) 23 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4716 B) 4720 C) 4680 D) 4760 24 / 30 Soddalashtiring. (0<m<7) A) 7 B) 2m-7 C) 7-2m D) m 25 / 30 sistema a ning qanday qiymatida cheksiz ko’p yechimga ega? A) (2;∞) B) (-∞;6])v[6;∞) C) 6 D) (-∞;6) 26 / 30 A) 2 B) 3 C) 5 D) 1 27 / 30 Ushbu funksiyaning boshlang’ich funksiyasini toping. A) ln(|x+4*|x-1|)+c B) ln|x+4/x-1|+c C) ln(|x+4+|x-1|)+c D) ln|x-1/x+4|+c 28 / 30 y= funksiyaning aniqlanish sohasini toping A) (0,2) B) (2;∞) C) (-∞;0)v(2;∞) D) (-∞;0])v[2;∞) 29 / 30 sistemada xy ning qiymatini toping. A) 60 B) 80 C) 64 D) 75 30 / 30 Hisoblang: A) 1 B) -1 C) 3 D) 2 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz