Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 134 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 4 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Hisoblang A) 1/2 B) √3 C) √3/2 D) 2 2 / 30 Ifodani soddalashtiring. 2 cos55o.cos40o.sin55o+cos110o.sin40o A) 0 B) 1 C) 2 D) 0,5 3 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) ln(ln x) B) lg(lg x) C) ln(lg x) D) lg(ln x) 4 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) 4sin2x*cos(cos2x) B) -4sin2x*cos(2cos2x) C) -4sin2x*cos(cos2x) D) 4sin2x*cos(2cos2x) 5 / 30 To’rtburchakli muntazam piramidaning yon qirrasidagi ikki yoqli burchak 120 ga teng. Diagonal kesimining yuzasi S ga teng bo’lsa, uning yon sirtini toping. A) 2S B) 0,5S C) 3S D) 4S 6 / 30 x(t)=t2+6t+5 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakat boshlangandan necha sekund o’tgach boshlang’ich nuqtaga nisbatan 77 metr masofaga siljiydi? A) 7 B) 10 C) 6 D) 8 7 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 5√3+3/3 B) 3√3+1/5 C) 2√2/3 D) 3√2+2/4 8 / 30 a=sin 1; b=sin 2; c=sin 3; d=sin 4 va e=sin 5 sonlarni kamayish tartibida joylashtiring. A) b>a>c>d>e B) b>c>a>d>e C) e>b>a>d>c D) a>b>c>d>e 9 / 30 funktsiyaning aniqlanish sohasini toping. A) (-∞;1)v(2;∞) B) (1;2) C) (-∞;1]v[2;∞) D) [1;2] 10 / 30 a ning 7x-a-13=(a-5)(x+7) tenglama yechimga ega bo’lmaydigan qiymatining natural bo’luvchilar sonini toping. A) 8 B) 6 C) 12 D) 4 11 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) √3 B) 2 C) √2 D) 1 12 / 30 |x2-5x-14|+20≥5|x+2|+4|x-7| tengsizlikni yeching. A) [1;6] B) [2;4]v{2}v[3;∞) C) [-2;4]v{6} D) (-∞;-6]v{2}v[12;∞) 13 / 30 Anvar tub son o’yladi va o’ylagan sonini 5 ga ko’paytirib, 8 ni ayirgan edi, yana tub son hosil bo’ldi. Anvar qanday son o’ylagan? A) 412967 B) aniqlab bo’lmaydi C) 2 D) 374389 14 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 11 B) 9 C) 10 D) 12 15 / 30 Teng yonli trpetsiyaning asoslari 15 va 25 ga balandligi esa 15 ga teng trapetsiyaning dioganalini toping A) 30 B) 25 C) 20 D) 28 16 / 30 Tenglamaning nechta ildizi bor? |x+1|=|2x-1| A) 3 B) 1 C) 2 D) 4 17 / 30 Tenglamaning ildizlari yig`indisini toping. A) 4 B) 3 C) 5 D) 6 18 / 30 y= funksiyaning aniqlanish sohasini toping A) (0,2) B) (-∞;0])v[2;∞) C) (-∞;0)v(2;∞) D) (2;∞) 19 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (-7;-1) B) (7; 1) C) (-7; 1) D) (4; -3) 20 / 30 sistemadan x+y+z ning qiymatini toping. A) -139/41 B) 139/41 C) 140/41 D) 150/41 21 / 30 Qaysi javobda faqat juft funksiyalar ko’rsatilgan? A) 2, 3 B) 1,4 C) 3, 4 D) 1, 3 22 / 30 Bog’bon uch kun davomida o’nta daraxt ko’chati o’tqazishi lozim. Agar bog’bon bir kunda eng kamida bitta ko’chat o’tqazadigan bo’lsa, u shu ishni kunlar bo’yicha necha xil usul bilan taqsimlashi mumkin? A) 32 B) 30 C) 36 D) 25 23 / 30 sin2x-cos2x=1 tenglama [-π; 2π] oraliqda nechta ildizga ega? A) 10 B) 6 C) 7 D) 9 24 / 30 Agar bank qo`yilgan pulga 40% yillik foyda bersa, qo`yilgan 5000 so`m pul bir yildan keyin qancha bo`ladi ? A) 7200 B) 6900 C) 6200 D) 7000 25 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping. A) 16 B) 14 C) 18 D) 17 26 / 30 a(x+2)=2x+1 tenglama a ning qanday qiymatida yechimga ega emas? A) (-∞;2)v(2;∞) B) (∞;∞) C) (2;∞) D) (-∞;2) 27 / 30 To’g’ri to’rtburchakning perimetri 50 ga teng. Bir tomoni boshqa tomonidan 5 ga ko’p. To’g’ri to’rtburchakning yuzini toping. A) 225 B) 50 C) 150 D) 60 28 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 2222222175 B) 222222222222 C) 22222222220 D) 222220175 29 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) (5√3+3)π/3 B) 64√2π/3 C) 8√2π/5 D) 3√2π/4 30 / 30 Tenglamaning ildizlari yig’indisi va ko’paytmasining yig’indisini toping. |x+1|.|x-4|=5 A) -6 B) 6 C) -3 D) 9 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz