Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 164 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 funktsiyaning aniqlanish sohasini toping. A) [1;2] B) (-∞;1)v(2;∞) C) (-∞;1]v[2;∞) D) (1;2) 2 / 30 Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY uchburchak qanday uchburchak bo‘ladi? A) muntazam uchburchak B) ixtiyoriy uchburchak C) to`g`ri burchakli uchburchak D) teng yonli uchburchak 3 / 30 Teng yonli trpetsiyaning asoslari 15 va 25 ga balandligi esa 15 ga teng trapetsiyaning dioganalini toping A) 20 B) 28 C) 30 D) 25 4 / 30 7 sonini uchta natural sonlar yig’indisi ko’rinishida necha xil usulda yozish mumkin? A) 3 B) 5 C) 6 D) 4 5 / 30 y= funksiyaning aniqlanish sohasini toping A) (-∞;0)v(2;∞) B) (0,2) C) (-∞;0])v[2;∞) D) (2;∞) 6 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5, 6 ga teng bo’lsa, u holda AB tomon uzunligini toping. A) bunday to’gri to’rtburchak mavjud emas B) √7 C) 2 D) √37 7 / 30 Hisoblang A) 1 B) -1 C) 2 D) 0 8 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4680 B) 4720 C) 4716 D) 4760 9 / 30 To’rtburchakli muntazam piramidaning yon qirrasidagi ikki yoqli burchak 120 ga teng. Diagonal kesimining yuzasi S ga teng bo’lsa, uning yon sirtini toping. A) 0,5S B) 4S C) 2S D) 3S 10 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 2200 B) 2100 C) 2000 D) 1900 11 / 30 Radiusi 25 bo’lgan doirada 48 ga teng vatar o’tkazilgan. Doira markazidan shu vatargacha masofani toping. A) 7 B) 10 C) 8 D) 9 12 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) 2√2 B) 2 C) 4 D) √2 13 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) √3/2 B) 1,5 C) 1 D) √5/2 14 / 30 Agar va b-a=4 bo’lsa, a+b ni toping. A) 2 B) 4 C) 3,5 D) 3 15 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²(1-2sinα/4sin²) B) πa²(1+2cosα/4sin²) C) πa²/4cos²α D) πa²/4sin²α 16 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) 4sin2x*cos(cos2x) B) -4sin2x*cos(cos2x) C) 4sin2x*cos(2cos2x) D) -4sin2x*cos(2cos2x) 17 / 30 Quyidagi va to’g’ri chiziqlarning o’zaro holatini aniqlang. A) ayqash to’gri chiziqlar B) o’zaro kesishadi C) o’zaro perpendikulyar D) o’zaro parallel 18 / 30 Bir vaqtning o’zida 9,13, . . . ,405 va 15,21, . . . ,255 ketma–ketliklarning hadlari bo’lgan sonlarning eng kattasi va eng kichigining ayirmasini toping A) 150 B) 228 C) 231 D) 147 19 / 30 bo’lsa, ni x orqali ifodalang. A) x/25 B) 2-x C) 2/x D) 25/x 20 / 30 sistemadan x+y+z ning qiymatini toping. A) -139/41 B) 140/41 C) 139/41 D) 150/41 21 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 22222222220 B) 2222222175 C) 222222222222 D) 222220175 22 / 30 Hisoblang A) 3√3 B) 1 C) √3 D) 2√3 23 / 30 Tenglamani yeching. |x2-11x+10|=x2-11x+10 A) 1; 10 B) (-∞;1]v[10;∞) C) [10;∞) D) (-∞;1] 24 / 30 Agar bank qo`yilgan pulga 40% yillik foyda bersa, qo`yilgan 5000 so`m pul bir yildan keyin qancha bo`ladi ? A) 7200 B) 6900 C) 7000 D) 6200 25 / 30 Radiuslari orasidagi burchagi 36o va radiusi 5 ga teng bo`lgan sektor yoyining uzunligini toping. A) π/2 B) π C) 2π D) 2π/3 26 / 30 ifodaning qiymatini toping. A) -2 B) 0 C) 0,5 D) -0,5 27 / 30 Ostki asosining yuzi 32π va ustki asosining yuzi 18π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning sirtini toping. A) 56π B) 96π C) 72π D) 100π 28 / 30 bo’lsa ni toping. Bunda funksiya f(x) ga teskari funksiya. A) -14 B) -12 C) -10 D) -4 29 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping. A) 16 B) 17 C) 14 D) 18 30 / 30 Agar arctga+ arctgb + arctgc= bo’lsa, a+b+c ni toping. A) 1 B) abc C) ab/c D) ab 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz