Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 153 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 7 sonini uchta natural sonlar yig’indisi ko’rinishida necha xil usulda yozish mumkin? A) 5 B) 6 C) 4 D) 3 2 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 2100 B) 2000 C) 2200 D) 1900 3 / 30 Tomoni 25 ga diagonallaridan biri 4 ga teng bo’lgan rombning yuzini toping. A) 8√5 B) 32 C) 24√5 D) 16 4 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 10 B) 12 C) 9 D) 11 5 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) o’tmas burchakli uchburchak B) to’gri burchakli uchburchak C) teng tomonli uchburchak D) o’tkir burchakli uchburchak 6 / 30 sin2x-cos2x=1 tenglama [-π; 2π] oraliqda nechta ildizga ega? A) 9 B) 7 C) 10 D) 6 7 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 3π/2 B) 4π/3 C) 2π/3 D) 3π/4 8 / 30 ABC muntazam uchburchak ichidan ixtiyoriy P nuqta olinib, undan BC, CA va AB tomonlarga mos ravishda PD, PE va PF perpendikulyarlar tushirilgan bo’lsa,ni toping. A) 1 B) 1/√2 C) 0,5 D) 1/√3 9 / 30 Hisoblang A) √3 B) 2√3 C) 3√3 D) 1 10 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 90° B) 72° C) 30° D) 60° 11 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 222220175 B) 22222222220 C) 2222222175 D) 222222222222 12 / 30 (-3;4) nuqtaga absissa, ordinata o’qlariga va koordinata boshiga nisbatan simmetrik bo’lgan nuqtalarni tutashtirishdan hosil bo’lgan uchburchakning eng kata tomonini toping. A) 24 B) 12 C) 10 D) 14 13 / 30 Ag ar tgα=2 bo’lsa, u holda ni hisoblang A) 10/27 B) -10/27 C) 10/3 D) -10/3 14 / 30 a ning 7x-a-13=(a-5)(x+7) tenglama yechimga ega bo’lmaydigan qiymatining natural bo’luvchilar sonini toping. A) 4 B) 12 C) 6 D) 8 15 / 30 Agar bank qo’yilgan pulga 40% yillik bersa, qo’yilgan 4500 so’m pul bir yildan so’ng qancha bo’ladi? A) 6200 B) 6100 C) 6000 D) 6300 16 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakning perimetri 48 va aylana radiusi 7 ga teng bo‘lsa, u holda kesma uzunligini toping A) 25 B) 30 C) 15 D) 12 17 / 30 Radiuslari orasidagi burchagi 36o va radiusi 5 ga teng bo`lgan sektor yoyining uzunligini toping. A) π B) π/2 C) 2π/3 D) 2π 18 / 30 Teng yonli uchburchakning tomonlari 5, 5 va 6 ga teng. Bu uchburchakning bissektiritsalari va medianalari kesishgan nuqtalar A) 1,2 B) 1 C) 1/6 D) 1/2 19 / 30 Bog’bon uch kun davomida o’nta daraxt ko’chati o’tqazishi lozim. Agar bog’bon bir kunda eng kamida bitta ko’chat o’tqazadigan bo’lsa, u shu ishni kunlar bo’yicha necha xil usul bilan taqsimlashi mumkin? A) 32 B) 25 C) 30 D) 36 20 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 1; 2; 1,5; 1,2 ga teng bo’ladigan barcha to’g’ri to’rtburchaklar sonini toping A) 1 B) cheksiz ko’p C) 0 D) 2 21 / 30 Hisoblang A) √3 B) √3/2 C) 1/2 D) 2 22 / 30 Soddalashtiring. (0<m<7) A) 2m-7 B) m C) 7 D) 7-2m 23 / 30 tenglamani yeching. A) 2017 B) 2019 C) 0 D) 2018 24 / 30 Hisoblang. A) 2/34 B) 17/34 C) 15/34 D) 2/17 25 / 30 y=cos(2sinx) funksiyaning qiymatlar sohasini toping. A) [0;1] B) [cos2;1] C) [0;cos2] D) [-1;1] 26 / 30 Ushbu funksiyaning boshlang’ich funksiyasini toping. A) ln|x-1/x+4|+c B) ln(|x+4*|x-1|)+c C) ln(|x+4+|x-1|)+c D) ln|x+4/x-1|+c 27 / 30 AA1A2A3A4A5A6 muntazam oltiburchakli piramidaning hajmi ga va balandligi 2 ga teng bo‘lsa, u holda AA2A6 kesim yuzini toping. A) √5 B) 3 C) 2 D) √15 28 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 8 B) 6 C) 4 D) 5 29 / 30 Tenglamani yeching. (x+2)+(x+4)+(x+6)+…+(x+100)=2800 A) 7 B) 4 C) 3 D) 5 30 / 30 ifodaning qiymatini toping. A) 0 B) -0,5 C) -2 D) 0,5 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz