Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 153 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 7 sonini uchta natural sonlar yig’indisi ko’rinishida necha xil usulda yozish mumkin? A) 6 B) 4 C) 5 D) 3 2 / 30 Tengsizlik nechta butun yechimga ega? A) cheksiz ko’p B) 4 C) 3 D) 1 3 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 2√2/3 B) 3√2+2/4 C) 5√3+3/3 D) 3√3+1/5 4 / 30 O’qishni bilmaydigan bola alifbening A,A,A, N,N, S- 6 ta harflarini ixtiyoriy ravishda terib chiqadi. Bunda ANANAS so’zining hosil bo’lish ehtimolini toping. A) 6/720 B) 1/60 C) 5/720 D) 5/24 5 / 30 Soat 3:37 bo’lganda minut va soat millari orasidagi burchakni toping. A) 112,5° B) 100° C) 113,5° D) 113° 6 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) -4sin2x*cos(cos2x) B) 4sin2x*cos(2cos2x) C) -4sin2x*cos(2cos2x) D) 4sin2x*cos(cos2x) 7 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 2000 B) 1900 C) 2200 D) 2100 8 / 30 a=sin 1; b=sin 2; c=sin 3; d=sin 4 va e=sin 5 sonlarni kamayish tartibida joylashtiring. A) b>c>a>d>e B) a>b>c>d>e C) e>b>a>d>c D) b>a>c>d>e 9 / 30 sistema yagona yechimga ega bo’ladigan a ning barcha qiymatlari to’plamini toping. A) {2;4} B) {-1;2} C) {-1;3} D) {1;2} 10 / 30 Ushbu arifmetik progressiyaning manfiy hadlari yig’indisini toping. A) -0,75 B) -1 C) -0,5 D) -0,25 11 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) ln(lg x) B) lg(lg x) C) lg(ln x) D) ln(ln x) 12 / 30 ifodaning qiymatini toping. A) -2 B) -0,5 C) 0,5 D) 0 13 / 30 sistemadan x+y+z ning qiymatini toping. A) 140/41 B) 139/41 C) 150/41 D) -139/41 14 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 108 B) 52√3 C) 54 D) 48√3 15 / 30 Tengsizlikni yeching. A) (-3;2) B) (-3;2)v(2;4) C) (2;4) D) (-4;2)v(2;3) 16 / 30 Anvar tub son o’yladi va o’ylagan sonini 5 ga ko’paytirib, 8 ni ayirgan edi, yana tub son hosil bo’ldi. Anvar qanday son o’ylagan? A) 374389 B) aniqlab bo’lmaydi C) 412967 D) 2 17 / 30 bo’lsa, ni x orqali ifodalang. A) 25/x B) x/25 C) 2-x D) 2/x 18 / 30 Quyidagilardan qaysi biri barcha lar uchun ma’noga ega (aniqlangan)? A) 4k+1/1/8:7-1/56 B) ²ᴷ⁺⁴v2k+1/k²+1 C) ⁴ᴷ⁺³√-√2k+1 D) (512-1/2⁻⁹)° 19 / 30 Sin9x =4sin3x tenglamani yeching A) πn, n€Ζ B) π/2+πn, n€Ζ C) π/3+πn, n€Ζ D) πn/3, n€Ζ 20 / 30 funktsiyaning aniqlanish sohasini toping. A) (1;2) B) (-∞;1)v(2;∞) C) (-∞;1]v[2;∞) D) [1;2] 21 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 72° B) 60° C) 30° D) 90° 22 / 30 Muntazam uchburchakli piramidaning yon qirrasi asos tekisligi bilan 45o li burchak tashkil etgan bo‘lsa, u holda piramidaning yon sirti yuzining uning asosi yuziga nisbatini toping. A) 4 B) 2√5 C) 2√3 D) 3√3 23 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) 1 B) √2 C) 2 D) √3 24 / 30 Agar sinx+cosx=a bo’lsa, ning qiymatini toping. A) -1/2 B) 1/3 C) 2/5 D) 1/2 25 / 30 x(t)=t2+6t+5 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakat boshlangandan necha sekund o’tgach boshlang’ich nuqtaga nisbatan 77 metr masofaga siljiydi? A) 6 B) 8 C) 10 D) 7 26 / 30 n ning qanday qiymatida ushbu 81 .82 .83 .….8n=51222 tenglik o’rinli bo’ladi? A) 14 B) 11 C) 10 D) 12 27 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (4; -3) B) (7; 1) C) (-7;-1) D) (-7; 1) 28 / 30 Soddalashtiring. A) 2018a/a+1 B) 2019 C) a+1 D) 2018 29 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakning perimetri 48 va aylana radiusi 7 ga teng bo‘lsa, u holda kesma uzunligini toping A) 25 B) 30 C) 15 D) 12 30 / 30 Tomoni 12 ga teng bo`lgan teng tomonli uchburchakga ichki chizilgan aylana uzunligini toping. A) 2√3π B) 4√3π C) 3π D) 12π 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz