Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 153 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 a=sin 1; b=sin 2; c=sin 3; d=sin 4 va e=sin 5 sonlarni kamayish tartibida joylashtiring. A) b>c>a>d>e B) b>a>c>d>e C) a>b>c>d>e D) e>b>a>d>c 2 / 30 Fazoda (1;2;3) nuqtalardan o’tuvchi to’g’ri chiziq tenglamasini tuzing. A) x=y/3=z/2 B) -x-y+z=0 C) x-1/2=y-2/3=z-3/4 D) 2x+3y+z=0 3 / 30 Hisoblang: A) 2 B) 3 C) 1 D) -1 4 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 54 B) 52 C) 108 D) 48 5 / 30 Ushbu arifmetik progressiyaning manfiy hadlari yig’indisini toping. A) -0,5 B) -1 C) -0,75 D) -0,25 6 / 30 Agar va b-a=4 bo’lsa, a+b ni toping. A) 4 B) 3,5 C) 2 D) 3 7 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 3π/4 B) 2π/3 C) 3π/2 D) 4π/3 8 / 30 sistemadan x+y+z ning qiymatini toping. A) 140/41 B) -139/41 C) 139/41 D) 150/41 9 / 30 Quyidagi va to’g’ri chiziqlarning o’zaro holatini aniqlang. A) o’zaro parallel B) ayqash to’gri chiziqlar C) o’zaro perpendikulyar D) o’zaro kesishadi 10 / 30 sin2x-cos2x=1 tenglama [-π; 2π] oraliqda nechta ildizga ega? A) 9 B) 10 C) 6 D) 7 11 / 30 tenglamalar sistemasini yeching A) (3;–4) B) (4;–3) C) (4;3) D) (–4;3) 12 / 30 Ushbu funksiyaning boshlang’ich funksiyasini toping. A) ln(|x+4+|x-1|)+c B) ln(|x+4*|x-1|)+c C) ln|x-1/x+4|+c D) ln|x+4/x-1|+c 13 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 22222222220 B) 222222222222 C) 2222222175 D) 222220175 14 / 30 Tomoni 12 ga teng bo`lgan teng tomonli uchburchakga ichki chizilgan aylana uzunligini toping. A) 4√3π B) 3π C) 2√3π D) 12π 15 / 30 Tomoni 6 ga teng bo`lgan teng tomonli uchburchakga tashqi chizilgan doiraning yuzini toping. A) 10 π B) 7 π C) 12π D) 6 π 16 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 90° B) 72° C) 60° D) 30° 17 / 30 ABCD kvadrat ichidan olingan O nuqtadan A, B, C uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5 ga teng bo’lsa, u holda OD kesma uzunligini toping. A) 3 B) 6 C) √37 D) √32 18 / 30 To’g’ri burchakli uchburchakning yuzi 24 ga, katetlaridan biri 6 ga teng bo’lsa, gipotenuzasini toping A) √46 B) 10 C) 11 D) 12 19 / 30 Teng yonli uchburchakning tomonlari 5, 5 va 6 ga teng. Bu uchburchakning bissektiritsalari va medianalari kesishgan nuqtalar A) 1/6 B) 1,2 C) 1 D) 1/2 20 / 30 Soddalashtiring. (0<m<7) A) 2m-7 B) 7 C) m D) 7-2m 21 / 30 y= funksiyaning aniqlanish sohasini toping A) (-∞;0)v(2;∞) B) (2;∞) C) (0,2) D) (-∞;0])v[2;∞) 22 / 30 Rombning balandligi 8 ga dioganallarining ko’paytmasi 80 ga teng. Rombning perimetrini toping A) 16 B) 24 C) 20 D) 32 23 / 30 Parallelogrammning tomonlari nisbati 3:5 kabi. Agar parallelogrmmning perimetri 48 ga burchaklaridan biri 1200 ga teng bo’lsa, uning yuzini toping. A) 67,5 B) 67,5√3 C) 48√3 D) 135√3/4 24 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 18 B) 120 C) 47 D) 60 25 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 32 B) 42 C) 38 D) 36 26 / 30 m ning qanday eng katta butun qiymatida y=2x-mx-5+m funksiyaning grafigi 1,3,4 –choraklarda yotadi? A) 5 B) 1 C) 2 D) 3 27 / 30 Tomoni 2 ga teng kvadratga tashqi chizilgan aylana uzunligini toping. A) 4π B) 2π/3 C) 3π D) 2π 28 / 30 Bir vaqtning o’zida 9,13, . . . ,405 va 15,21, . . . ,255 ketma–ketliklarning hadlari bo’lgan sonlarning eng kattasi va eng kichigining ayirmasini toping A) 150 B) 147 C) 231 D) 228 29 / 30 Yuzasi 10 ga teng bo’lgan kvadratning ketma-ket ikki uchidan o’tuvchi aylana chizilgan. Uchinchi uchidan aylanaga urunma o’tkazilgan. Urunma tomondan ikki marta katta bo’lsa, aylana radiusini toping. A) 4 B) 5 C) 10 D) 6 30 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping. A) 16 B) 14 C) 17 D) 18 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz