Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 127 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 3 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 To‘g‘ri to‘rtburchakning eni 25% ga orttirildi, bo‘yi esa 25% ga kamaytirildi. Natijada uning yuzi qanday o‘zgardi? A) 6,25% ga kamayadi B) 2,5% ga ortadi C) 6,25% ga ortadi D) o‘zgarmaydi 2 / 30 Hisoblang: A) 3 B) 1 C) -1 D) 2 3 / 30 Hisoblang. A) 15/34 B) 2/17 C) 17/34 D) 2/34 4 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 4 B) 6 C) 8 D) 5 5 / 30 Agar funksiya berilgan bo’lsa, u holda M=ning qiymatini toping. A) e⁴⁹⁵⁰ B) e⁵⁰⁵⁰ C) e⁻⁵⁰⁵⁰ D) e⁻⁴⁹⁵⁰ 6 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 60° B) 72° C) 90° D) 30° 7 / 30 Teng yonli uchburchakning tomonlari 5, 5 va 6 ga teng. Bu uchburchakning bissektiritsalari va medianalari kesishgan nuqtalar A) 1 B) 1,2 C) 1/6 D) 1/2 8 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) to’gri burchakli uchburchak B) o’tmas burchakli uchburchak C) teng tomonli uchburchak D) o’tkir burchakli uchburchak 9 / 30 Agar bank qo`yilgan pulga 40% yillik foyda bersa, qo`yilgan 5000 so`m pul bir yildan keyin qancha bo`ladi ? A) 7000 B) 7200 C) 6900 D) 6200 10 / 30 O’qishni bilmaydigan bola alifbening A,A,A, N,N, S- 6 ta harflarini ixtiyoriy ravishda terib chiqadi. Bunda ANANAS so’zining hosil bo’lish ehtimolini toping. A) 5/720 B) 1/60 C) 5/24 D) 6/720 11 / 30 Teng yonli trpetsiyaning asoslari 15 va 25 ga balandligi esa 15 ga teng trapetsiyaning dioganalini toping A) 25 B) 20 C) 28 D) 30 12 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping. A) 18 B) 16 C) 14 D) 17 13 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) √5/2 B) √3/2 C) 1,5 D) 1 14 / 30 Ostki asosining yuzi 32π va ustki asosining yuzi 18π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning sirtini toping. A) 100π B) 56π C) 72π D) 96π 15 / 30 sin2x-cos2x=1 tenglama [-π; 2π] oraliqda nechta ildizga ega? A) 9 B) 7 C) 10 D) 6 16 / 30 x(t)=t2+7t-6 qonuniyat bo’yicha harakatlanayotgan moddiy nuqtaning tezligi harakat boshlangandan necha sekund o’tgach 87 m/s ga teng bo’ladi? A) 36 B) 40 C) 50 D) 54 17 / 30 7 sonini uchta natural sonlar yig’indisi ko’rinishida necha xil usulda yozish mumkin? A) 5 B) 3 C) 4 D) 6 18 / 30 integralning qiymatini toping. A) -π/2 B) 0 C) π/2 D) π/4 19 / 30 Soddalashtiring. A) 2019 B) 2018 C) a+1 D) 2018a/a+1 20 / 30 Ushbu arifmetik progressiyaning manfiy hadlari yig’indisini toping. A) -1 B) -0,75 C) -0,25 D) -0,5 21 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) 1 B) √3 C) 2 D) √2 22 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) ln(ln x) B) ln(lg x) C) lg(ln x) D) lg(lg x) 23 / 30 ABC muntazam uchburchak ichidan ixtiyoriy P nuqta olinib, undan BC, CA va AB tomonlarga mos ravishda PD, PE va PF perpendikulyarlar tushirilgan bo’lsa,ni toping. A) 0,5 B) 1 C) 1/√3 D) 1/√2 24 / 30 sistemadan x+y+z ning qiymatini toping. A) 140/41 B) -139/41 C) 139/41 D) 150/41 25 / 30 Tomoni 12 ga teng bo`lgan teng tomonli uchburchakga ichki chizilgan aylana uzunligini toping. A) 3π B) 12π C) 2√3π D) 4√3π 26 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5, 6 ga teng bo’lsa, u holda AB tomon uzunligini toping. A) √37 B) bunday to’gri to’rtburchak mavjud emas C) √7 D) 2 27 / 30 sonning oxirgi raqamini toping. A) 6 B) 8 C) 4 D) 2 28 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 4 B) 1 C) 3 D) 2 29 / 30 Tengsizlikni yeching. A) (-3;2)v(2;4) B) (2;4) C) (-3;2) D) (-4;2)v(2;3) 30 / 30 Sin9x =4sin3x tenglamani yeching A) πn, n€Ζ B) π/2+πn, n€Ζ C) π/3+πn, n€Ζ D) πn/3, n€Ζ 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz