Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 154 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 30° B) 72° C) 60° D) 90° 2 / 30 A) 2 B) 5 C) 1 D) 3 3 / 30 y=cos(2sinx) funksiyaning qiymatlar sohasini toping. A) [-1;1] B) [0;cos2] C) [0;1] D) [cos2;1] 4 / 30 integralning qiymatini toping. A) π/2 B) -π/2 C) π/4 D) 0 5 / 30 Teng yonli trpetsiyaning asoslari 15 va 25 ga balandligi esa 15 ga teng trapetsiyaning dioganalini toping A) 28 B) 25 C) 30 D) 20 6 / 30 Tengsizlikni yeching. A) (-4;2)v(2;3) B) (-3;2)v(2;4) C) (-3;2) D) (2;4) 7 / 30 Agar bank qo`yilgan pulga 40% yillik foyda bersa, qo`yilgan 5000 so`m pul bir yildan keyin qancha bo`ladi ? A) 7000 B) 7200 C) 6200 D) 6900 8 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 36 B) 38 C) 32 D) 42 9 / 30 A) 1 B) 0 C) √6 D) 2 10 / 30 tenglamalar sistemasini yeching A) (4;–3) B) (4;3) C) (3;–4) D) (–4;3) 11 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) 2 B) √3 C) 1 D) √2 12 / 30 x2-5|x|-6=0 tenglama ildizini toping A) -1;6 B) ±;±6 C) -1;-6 D) ±6 13 / 30 Ostki asosining yuzi 32π va ustki asosining yuzi 18π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning sirtini toping. A) 96π B) 100π C) 72π D) 56π 14 / 30 Bog’bon uch kun davomida o’nta daraxt ko’chati o’tqazishi lozim. Agar bog’bon bir kunda eng kamida bitta ko’chat o’tqazadigan bo’lsa, u shu ishni kunlar bo’yicha necha xil usul bilan taqsimlashi mumkin? A) 36 B) 30 C) 25 D) 32 15 / 30 Tenglamani yeching. |x2-11x+10|=x2-11x+10 A) (-∞;1]v[10;∞) B) 1; 10 C) (-∞;1] D) [10;∞) 16 / 30 a ning qanday qiymatlarida ushbu 7x-a-13=(a-5)(x+7) tenglama yagona yechimga ega A) a≠12 B) a≠5 C) a=12 D) a ning bunday qiymati yo’q 17 / 30 funksiya uchun quyidagi mulohazalardan qaysi biri o’rinli? A) bunday funksiya mavjud emas B) juft funksiya C) juft ham emas, toq ham emas funksiya D) toq funksiya 18 / 30 Rasmda ko‘rsatilgan ko‘pyoqlardan qaysi birida 4 ta yoq, 6 ta qirra bor? A) 2 B) 1, 3 C) 1, 2 D) 3 19 / 30 Tengsizlik nechta butun yechimga ega? A) 1 B) cheksiz ko’p C) 3 D) 4 20 / 30 To‘g‘ri to‘rtburchakning eni 25% ga orttirildi, bo‘yi esa 25% ga kamaytirildi. Natijada uning yuzi qanday o‘zgardi? A) 2,5% ga ortadi B) o‘zgarmaydi C) 6,25% ga ortadi D) 6,25% ga kamayadi 21 / 30 Tomoni 25 ga diagonallaridan biri 4 ga teng bo’lgan rombning yuzini toping. A) 32 B) 24√5 C) 16 D) 8√5 22 / 30 Tomoni 6 ga teng bo`lgan teng tomonli uchburchakga tashqi chizilgan doiraning yuzini toping. A) 12π B) 10 π C) 7 π D) 6 π 23 / 30 Soddalashtiring. A) 2018 B) 2019 C) 2018a/a+1 D) a+1 24 / 30 To’g’ri burchakli uchburchakning yuzi 24 ga, katetlaridan biri 6 ga teng bo’lsa, gipotenuzasini toping A) 10 B) 12 C) 11 D) √46 25 / 30 Tenglamaning ildizlari yig`indisini toping. A) 4 B) 6 C) 3 D) 5 26 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 50 B) 10 yoki 50 C) 10 D) 2 yoki 50 27 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) 4sin2x*cos(2cos2x) B) -4sin2x*cos(cos2x) C) -4sin2x*cos(2cos2x) D) 4sin2x*cos(cos2x) 28 / 30 n ning qanday qiymatida ushbu 81 .82 .83 .….8n=51222 tenglik o’rinli bo’ladi? A) 10 B) 14 C) 12 D) 11 29 / 30 Agar sinx+cosx=a bo’lsa, ning qiymatini toping. A) 2/5 B) 1/2 C) -1/2 D) 1/3 30 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 3√2+2/4 B) 3√3+1/5 C) 5√3+3/3 D) 2√2/3 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz