Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 154 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (-7;-1) B) (7; 1) C) (-7; 1) D) (4; -3) 2 / 30 Teng yonli trpetsiyaning asoslari 15 va 25 ga balandligi esa 15 ga teng trapetsiyaning dioganalini toping A) 28 B) 30 C) 20 D) 25 3 / 30 x2-5|x|-6=0 tenglama ildizini toping A) -1;6 B) ±6 C) -1;-6 D) ±;±6 4 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) 8√2π/5 B) 3√2π/4 C) 64√2π/3 D) (5√3+3)π/3 5 / 30 integralning qiymatini toping. A) π/2 B) -π/2 C) 0 D) π/4 6 / 30 Tengsizlikni yeching. A) 0 B) to'g'ri javob yo'q C) (0;+∞) D) (-1/³ √2 ;0) 7 / 30 a=sin 1; b=sin 2; c=sin 3; d=sin 4 va e=sin 5 sonlarni kamayish tartibida joylashtiring. A) e>b>a>d>c B) a>b>c>d>e C) b>a>c>d>e D) b>c>a>d>e 8 / 30 sonning oxirgi raqamini toping. A) 2 B) 6 C) 4 D) 8 9 / 30 funktsiyaning aniqlanish sohasini toping. A) (-∞;1)v(2;∞) B) (-∞;1]v[2;∞) C) [1;2] D) (1;2) 10 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 5 B) 6 C) 8 D) 4 11 / 30 Ag ar tgα=2 bo’lsa, u holda ni hisoblang A) 10/3 B) -10/27 C) -10/3 D) 10/27 12 / 30 Yuzasi 10 ga teng bo’lgan kvadratning ketma-ket ikki uchidan o’tuvchi aylana chizilgan. Uchinchi uchidan aylanaga urunma o’tkazilgan. Urunma tomondan ikki marta katta bo’lsa, aylana radiusini toping. A) 5 B) 10 C) 4 D) 6 13 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping. A) 18 B) 16 C) 14 D) 17 14 / 30 To’rtburchakli muntazam piramidaning yon qirrasidagi ikki yoqli burchak 120 ga teng. Diagonal kesimining yuzasi S ga teng bo’lsa, uning yon sirtini toping. A) 3S B) 2S C) 0,5S D) 4S 15 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 2 yoki 50 B) 50 C) 10 yoki 50 D) 10 16 / 30 a(x+2)=2x+1 tenglama a ning qanday qiymatida yechimga ega emas? A) (-∞;2)v(2;∞) B) (-∞;2) C) (∞;∞) D) (2;∞) 17 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 3π/2 B) 2π/3 C) 3π/4 D) 4π/3 18 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) -4sin2x*cos(cos2x) B) -4sin2x*cos(2cos2x) C) 4sin2x*cos(cos2x) D) 4sin2x*cos(2cos2x) 19 / 30 Ifodani soddalashtiring. 2 cos55o.cos40o.sin55o+cos110o.sin40o A) 0 B) 2 C) 0,5 D) 1 20 / 30 Agar funksiya berilgan bo’lsa, u holda M=ning qiymatini toping. A) e⁻⁴⁹⁵⁰ B) e⁵⁰⁵⁰ C) e⁻⁵⁰⁵⁰ D) e⁴⁹⁵⁰ 21 / 30 bo’lsa, ni x orqali ifodalang. A) 2-x B) 25/x C) x/25 D) 2/x 22 / 30 Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY uchburchak qanday uchburchak bo‘ladi? A) ixtiyoriy uchburchak B) muntazam uchburchak C) to`g`ri burchakli uchburchak D) teng yonli uchburchak 23 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakning perimetri 48 va aylana radiusi 7 ga teng bo‘lsa, u holda kesma uzunligini toping A) 30 B) 12 C) 15 D) 25 24 / 30 sistemadan x+y+z ning qiymatini toping. A) 140/41 B) -139/41 C) 139/41 D) 150/41 25 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 1; 2; 1,5; 1,2 ga teng bo’ladigan barcha to’g’ri to’rtburchaklar sonini toping A) 2 B) 1 C) cheksiz ko’p D) 0 26 / 30 Tenglamaning nechta ildizi bor? |x+1|=|2x-1| A) 1 B) 2 C) 4 D) 3 27 / 30 Radiuslari orasidagi burchagi 36o va radiusi 5 ga teng bo`lgan sektor yoyining uzunligini toping. A) 2π B) 2π/3 C) π D) π/2 28 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 52 B) 108 C) 48 D) 54 29 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 3√2+2/4 B) 2√2/3 C) 3√3+1/5 D) 5√3+3/3 30 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) √3/2 B) 1 C) √5/2 D) 1,5 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz