Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 163 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 2 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Tenglamaning ildizlari yig`indisini toping. A) 5 B) 4 C) 3 D) 6 2 / 30 a(x+2)=2x+1 tenglama a ning qanday qiymatida yechimga ega emas? A) (2;∞) B) (-∞;2) C) (-∞;2)v(2;∞) D) (∞;∞) 3 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4720 B) 4716 C) 4760 D) 4680 4 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 3√3+1/5 B) 3√2+2/4 C) 5√3+3/3 D) 2√2/3 5 / 30 ifodaning qiymatini toping. A) -2 B) 0 C) -0,5 D) 0,5 6 / 30 Soat 3:37 bo’lganda minut va soat millari orasidagi burchakni toping. A) 113° B) 112,5° C) 113,5° D) 100° 7 / 30 O’qishni bilmaydigan bola alifbening A,A,A, N,N, S- 6 ta harflarini ixtiyoriy ravishda terib chiqadi. Bunda ANANAS so’zining hosil bo’lish ehtimolini toping. A) 6/720 B) 5/24 C) 5/720 D) 1/60 8 / 30 AA1A2A3A4A5A6 muntazam oltiburchakli piramidaning hajmi ga va balandligi 2 ga teng bo‘lsa, u holda AA2A6 kesim yuzini toping. A) 3 B) 2 C) √15 D) √5 9 / 30 sin2x-cos2x=1 tenglama [-π; 2π] oraliqda nechta ildizga ega? A) 6 B) 7 C) 10 D) 9 10 / 30 funksiya uchun quyidagi mulohazalardan qaysi biri o’rinli? A) juft funksiya B) toq funksiya C) juft ham emas, toq ham emas funksiya D) bunday funksiya mavjud emas 11 / 30 Tomoni 25 ga diagonallaridan biri 4 ga teng bo’lgan rombning yuzini toping. A) 24√5 B) 16 C) 8√5 D) 32 12 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 52√3 B) 54 C) 48√3 D) 108 13 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) √3/2 B) 1,5 C) √5/2 D) 1 14 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (-7;-1) B) (-7; 1) C) (7; 1) D) (4; -3) 15 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusidan katta bo’lgan uchburchaklar sonini toping. A) 2019 B) 0 C) 1 D) cheksiz ko’p 16 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) 1 B) √3 C) √2 D) 2 17 / 30 Radiuslari orasidagi burchagi 36o va radiusi 5 ga teng bo`lgan sektor yoyining uzunligini toping. A) 2π/3 B) π C) π/2 D) 2π 18 / 30 Agar f(x)=ax3-5x2+b va bo’lsa, a ni toping. A) 0 B) 1 C) 2 D) 3 19 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) -4sin2x*cos(cos2x) B) -4sin2x*cos(2cos2x) C) 4sin2x*cos(cos2x) D) 4sin2x*cos(2cos2x) 20 / 30 tenglamani yeching. A) 2018 B) 2017 C) 0 D) 2019 21 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 90° B) 60° C) 30° D) 72° 22 / 30 Tengsizlik nechta butun yechimga ega? A) 4 B) cheksiz ko’p C) 1 D) 3 23 / 30 Hisoblang A) 3√3 B) 1 C) 2√3 D) √3 24 / 30 m ning qanday eng katta butun qiymatida y=2x-mx-5+m funksiyaning grafigi 1,3,4 –choraklarda yotadi? A) 2 B) 5 C) 1 D) 3 25 / 30 Quyidagi 2x-y+3z=2018 va x+5y+z=2019 tekisliklarning holatini aniqlang. A) o’zaro perpendikulyar B) o’zaro parallel C) ayqash D) aniqlab bo’lmaydi 26 / 30 Agar funksiya berilgan bo’lsa, u holda M=ning qiymatini toping. A) e⁻⁵⁰⁵⁰ B) e⁻⁴⁹⁵⁰ C) e⁵⁰⁵⁰ D) e⁴⁹⁵⁰ 27 / 30 Soddalashtiring. (0<m<7) A) m B) 7-2m C) 7 D) 2m-7 28 / 30 Agar sinx+cosx=a bo’lsa, ning qiymatini toping. A) 1/2 B) 1/3 C) 2/5 D) -1/2 29 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) 2 B) 4 C) 2√2 D) √2 30 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) lg(lg x) B) ln(lg x) C) lg(ln x) D) ln(ln x) 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz