Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 138 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 5 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 (-3;4) nuqtaga absissa, ordinata o’qlariga va koordinata boshiga nisbatan simmetrik bo’lgan nuqtalarni tutashtirishdan hosil bo’lgan uchburchakning eng kata tomonini toping. A) 24 B) 10 C) 12 D) 14 2 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4760 B) 4716 C) 4720 D) 4680 3 / 30 Rombning balandligi 8 ga dioganallarining ko’paytmasi 80 ga teng. Rombning perimetrini toping A) 20 B) 16 C) 32 D) 24 4 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) to’gri burchakli uchburchak B) o’tkir burchakli uchburchak C) o’tmas burchakli uchburchak D) teng tomonli uchburchak 5 / 30 ABCD kvadrat ichidan olingan O nuqtadan A, B, C uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5 ga teng bo’lsa, u holda OD kesma uzunligini toping. A) √37 B) 3 C) 6 D) √32 6 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusidan katta bo’lgan uchburchaklar sonini toping. A) cheksiz ko’p B) 2019 C) 0 D) 1 7 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 1; 2; 1,5; 1,2 ga teng bo’ladigan barcha to’g’ri to’rtburchaklar sonini toping A) 1 B) 2 C) cheksiz ko’p D) 0 8 / 30 To’rtburchakli muntazam piramidaning yon qirrasidagi ikki yoqli burchak 120 ga teng. Diagonal kesimining yuzasi S ga teng bo’lsa, uning yon sirtini toping. A) 2S B) 0,5S C) 4S D) 3S 9 / 30 ifodaning qiymatini toping. A) -2 B) 0,5 C) 0 D) -0,5 10 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 48 B) 108 C) 54 D) 52 11 / 30 sistema yagona yechimga ega bo’ladigan a ning barcha qiymatlari to’plamini toping. A) {-1;3} B) {-1;2} C) {1;2} D) {2;4} 12 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 52√3 B) 54 C) 48√3 D) 108 13 / 30 a=sin 1; b=sin 2; c=sin 3; d=sin 4 va e=sin 5 sonlarni kamayish tartibida joylashtiring. A) b>c>a>d>e B) b>a>c>d>e C) a>b>c>d>e D) e>b>a>d>c 14 / 30 tenglamani yeching. A) 2017 B) 0 C) 2018 D) 2019 15 / 30 Tengsizlikni yeching. A) (-3;2) B) (-3;2)v(2;4) C) (2;4) D) (-4;2)v(2;3) 16 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 2000 B) 2200 C) 2100 D) 1900 17 / 30 Ifodani soddalashtiring. 2 cos55o.cos40o.sin55o+cos110o.sin40o A) 1 B) 2 C) 0 D) 0,5 18 / 30 funksiya uchun quyidagi mulohazalardan qaysi biri o’rinli? A) bunday funksiya mavjud emas B) toq funksiya C) juft ham emas, toq ham emas funksiya D) juft funksiya 19 / 30 Teng yonli uchburchakning tomonlari 5, 5 va 6 ga teng. Bu uchburchakning bissektiritsalari va medianalari kesishgan nuqtalar A) 1/2 B) 1,2 C) 1/6 D) 1 20 / 30 Hisoblang A) √3 B) 2√3 C) 3√3 D) 1 21 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 4 B) 5 C) 8 D) 6 22 / 30 Hisoblang. A) 17/34 B) 2/34 C) 15/34 D) 2/17 23 / 30 Tenglamaning ildizlari yig`indisini toping. A) 4 B) 3 C) 6 D) 5 24 / 30 n ning qanday qiymatida ushbu 81 .82 .83 .….8n=51222 tenglik o’rinli bo’ladi? A) 11 B) 10 C) 14 D) 12 25 / 30 Anvar tub son o’yladi va o’ylagan sonini 5 ga ko’paytirib, 8 ni ayirgan edi, yana tub son hosil bo’ldi. Anvar qanday son o’ylagan? A) aniqlab bo’lmaydi B) 412967 C) 374389 D) 2 26 / 30 sin2x-cos2x=1 tenglama [-π; 2π] oraliqda nechta ildizga ega? A) 10 B) 6 C) 9 D) 7 27 / 30 Tenglamani yeching. |x2-11x+10|=x2-11x+10 A) [10;∞) B) (-∞;1]v[10;∞) C) (-∞;1] D) 1; 10 28 / 30 Hisoblang A) 1 B) 2 C) -1 D) 0 29 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 32 B) 38 C) 36 D) 42 30 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) 4sin2x*cos(2cos2x) B) -4sin2x*cos(2cos2x) C) -4sin2x*cos(cos2x) D) 4sin2x*cos(cos2x) 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz