Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 164 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 2 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (-7; 1) B) (7; 1) C) (4; -3) D) (-7;-1) 2 / 30 sonning oxirgi raqamini toping. A) 6 B) 8 C) 4 D) 2 3 / 30 Agar bank qo`yilgan pulga 40% yillik foyda bersa, qo`yilgan 5000 so`m pul bir yildan keyin qancha bo`ladi ? A) 6200 B) 7000 C) 6900 D) 7200 4 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 2000 B) 2200 C) 1900 D) 2100 5 / 30 Agar bank qo’yilgan pulga 40% yillik bersa, qo’yilgan 4500 so’m pul bir yildan so’ng qancha bo’ladi? A) 6000 B) 6300 C) 6100 D) 6200 6 / 30 Radiuslari orasidagi burchagi 36o va radiusi 5 ga teng bo`lgan sektor yoyining uzunligini toping. A) 2π B) 2π/3 C) π D) π/2 7 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²(1-2sinα/4sin²) B) πa²/4cos²α C) πa²/4sin²α D) πa²(1+2cosα/4sin²) 8 / 30 sistemadan x+y ning qiymatini toping. A) 6 B) -12 C) 35/4 D) 12 9 / 30 Rasmda ko‘rsatilgan ko‘pyoqlardan qaysi birida 4 ta yoq, 6 ta qirra bor? A) 1, 3 B) 1, 2 C) 2 D) 3 10 / 30 x2-5|x|-6=0 tenglama ildizini toping A) ±;±6 B) ±6 C) -1;-6 D) -1;6 11 / 30 integralning qiymatini toping. A) π/4 B) π/2 C) -π/2 D) 0 12 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) √2 B) 1 C) 2 D) √3 13 / 30 x(t)=t2+7t-6 qonuniyat bo’yicha harakatlanayotgan moddiy nuqtaning tezligi harakat boshlangandan necha sekund o’tgach 87 m/s ga teng bo’ladi? A) 40 B) 36 C) 50 D) 54 14 / 30 Agar va b-a=4 bo’lsa, a+b ni toping. A) 2 B) 3,5 C) 3 D) 4 15 / 30 (-3;4) nuqtaga absissa, ordinata o’qlariga va koordinata boshiga nisbatan simmetrik bo’lgan nuqtalarni tutashtirishdan hosil bo’lgan uchburchakning eng kata tomonini toping. A) 10 B) 14 C) 12 D) 24 16 / 30 n ning qanday qiymatida ushbu 81 .82 .83 .….8n=51222 tenglik o’rinli bo’ladi? A) 11 B) 14 C) 12 D) 10 17 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 13 ga, katetlaridan biri 52 ga teng. Gipotenuzaga tushirilgan balandlik uzunligini toping A) 4 B) 6 C) 7 D) 5 18 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 30° B) 60° C) 72° D) 90° 19 / 30 Tenglamaning nechta ildizi bor? |x+1|=|2x-1| A) 1 B) 3 C) 4 D) 2 20 / 30 x(t)=t2+6t+5 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakat boshlangandan necha sekund o’tgach boshlang’ich nuqtaga nisbatan 77 metr masofaga siljiydi? A) 8 B) 10 C) 7 D) 6 21 / 30 Tengsizlikni yeching. A) (-1/³ √2 ;0) B) (0;+∞) C) to'g'ri javob yo'q D) 0 22 / 30 funktsiyaning aniqlanish sohasini toping. A) [1;2] B) (-∞;1)v(2;∞) C) (-∞;1]v[2;∞) D) (1;2) 23 / 30 Tenglamaning ildizlari yig`indisini toping. A) 3 B) 6 C) 4 D) 5 24 / 30 Tenglamaning ildizlari yig’indisi va ko’paytmasining yig’indisini toping. |x+1|.|x-4|=5 A) -6 B) 6 C) -3 D) 9 25 / 30 sistema a ning qanday qiymatida cheksiz ko’p yechimga ega? A) 6 B) (-∞;6])v[6;∞) C) (2;∞) D) (-∞;6) 26 / 30 Ag ar tgα=2 bo’lsa, u holda ni hisoblang A) -10/27 B) -10/3 C) 10/27 D) 10/3 27 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) 4sin2x*cos(cos2x) B) -4sin2x*cos(2cos2x) C) -4sin2x*cos(cos2x) D) 4sin2x*cos(2cos2x) 28 / 30 Quyidagi va to’g’ri chiziqlarning o’zaro holatini aniqlang. A) o’zaro parallel B) o’zaro kesishadi C) o’zaro perpendikulyar D) ayqash to’gri chiziqlar 29 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 10 yoki 50 B) 10 C) 50 D) 2 yoki 50 30 / 30 sistemada xy ning qiymatini toping. A) 60 B) 75 C) 80 D) 64 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz