Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 141 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 7 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Sin9x =4sin3x tenglamani yeching A) πn, n€Ζ B) π/2+πn, n€Ζ C) πn/3, n€Ζ D) π/3+πn, n€Ζ 2 / 30 Agar f(x)=ax3-5x2+b va bo’lsa, a ni toping. A) 3 B) 0 C) 2 D) 1 3 / 30 Ushbu arifmetik progressiyaning manfiy hadlari yig’indisini toping. A) -0,5 B) -0,75 C) -0,25 D) -1 4 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) √5/2 B) 1,5 C) 1 D) √3/2 5 / 30 200 kishidan iborat turistlar guruxida 140 kishi ingliz tilini, 90 kishi nemis tilini va 46 kishi ikkala tilni biladi. Ikkala tilni xam bilmaydigan turistlar necha foizni tashkil qiladi. A) 16 B) 8 C) 4 D) 12 6 / 30 Muntazam uchburchakli piramidaning yon qirrasi asos tekisligi bilan 45o li burchak tashkil etgan bo‘lsa, u holda piramidaning yon sirti yuzining uning asosi yuziga nisbatini toping. A) 2√5 B) 2√3 C) 4 D) 3√3 7 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4716 B) 4720 C) 4760 D) 4680 8 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 3√2+2/4 B) 5√3+3/3 C) 3√3+1/5 D) 2√2/3 9 / 30 Tomoni 12 ga teng bo`lgan teng tomonli uchburchakga ichki chizilgan aylana uzunligini toping. A) 3π B) 12π C) 2√3π D) 4√3π 10 / 30 Tomoni 2 ga teng kvadratga tashqi chizilgan aylana uzunligini toping. A) 3π B) 2π C) 2π/3 D) 4π 11 / 30 funksiya uchun quyidagi mulohazalardan qaysi biri o’rinli? A) toq funksiya B) bunday funksiya mavjud emas C) juft ham emas, toq ham emas funksiya D) juft funksiya 12 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 48√3 B) 54 C) 52√3 D) 108 13 / 30 Soddalashtiring. A) a+1 B) 2019 C) 2018a/a+1 D) 2018 14 / 30 To’g’ri burchakli uchburchakning yuzi 24 ga, katetlaridan biri 6 ga teng bo’lsa, gipotenuzasini toping A) √46 B) 11 C) 12 D) 10 15 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 11 B) 12 C) 9 D) 10 16 / 30 ABCD kvadrat ichidan olingan O nuqtadan A, B, C uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5 ga teng bo’lsa, u holda OD kesma uzunligini toping. A) √32 B) 6 C) 3 D) √37 17 / 30 Bir vaqtning o’zida 9,13, . . . ,405 va 15,21, . . . ,255 ketma–ketliklarning hadlari bo’lgan sonlarning eng kattasi va eng kichigining ayirmasini toping A) 228 B) 147 C) 231 D) 150 18 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakning perimetri 48 va aylana radiusi 7 ga teng bo‘lsa, u holda kesma uzunligini toping A) 12 B) 30 C) 15 D) 25 19 / 30 Agar sinx+cosx=a bo’lsa, ning qiymatini toping. A) 1/2 B) -1/2 C) 1/3 D) 2/5 20 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 2000 B) 2100 C) 2200 D) 1900 21 / 30 sistemadan x+y ning qiymatini toping. A) -12 B) 35/4 C) 12 D) 6 22 / 30 Tengsizlik nechta butun yechimga ega? A) 4 B) cheksiz ko’p C) 1 D) 3 23 / 30 m ning qanday eng katta butun qiymatida y=2x-mx-5+m funksiyaning grafigi 1,3,4 –choraklarda yotadi? A) 2 B) 3 C) 1 D) 5 24 / 30 Hisoblang A) 3√3 B) 2√3 C) √3 D) 1 25 / 30 n ning qanday qiymatida ushbu 81 .82 .83 .….8n=51222 tenglik o’rinli bo’ladi? A) 14 B) 11 C) 12 D) 10 26 / 30 tenglamani yeching. A) 2019 B) 2018 C) 2017 D) 0 27 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 108 B) 54 C) 52 D) 48 28 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) 4sin2x*cos(cos2x) B) 4sin2x*cos(2cos2x) C) -4sin2x*cos(cos2x) D) -4sin2x*cos(2cos2x) 29 / 30 sonning oxirgi raqamini toping. A) 2 B) 6 C) 8 D) 4 30 / 30 Tenglamani yeching. (x+2)+(x+4)+(x+6)+…+(x+100)=2800 A) 5 B) 7 C) 4 D) 3 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz