Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 149 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 47 B) 18 C) 120 D) 60 2 / 30 To‘g‘ri to‘rtburchakning eni 25% ga orttirildi, bo‘yi esa 25% ga kamaytirildi. Natijada uning yuzi qanday o‘zgardi? A) o‘zgarmaydi B) 6,25% ga kamayadi C) 6,25% ga ortadi D) 2,5% ga ortadi 3 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 4 B) 5 C) 6 D) 8 4 / 30 A) 1 B) 3 C) 5 D) 2 5 / 30 O’qishni bilmaydigan bola alifbening A,A,A, N,N, S- 6 ta harflarini ixtiyoriy ravishda terib chiqadi. Bunda ANANAS so’zining hosil bo’lish ehtimolini toping. A) 6/720 B) 5/720 C) 5/24 D) 1/60 6 / 30 Tomoni 25 ga diagonallaridan biri 4 ga teng bo’lgan rombning yuzini toping. A) 16 B) 24√5 C) 32 D) 8√5 7 / 30 tenglamalar sistemasini yeching A) (-4;-4) B) (-4;4) C) (4;–4) D) (4;4) 8 / 30 Sin9x =4sin3x tenglamani yeching A) π/3+πn, n€Ζ B) πn, n€Ζ C) π/2+πn, n€Ζ D) πn/3, n€Ζ 9 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 52 B) 48 C) 108 D) 54 10 / 30 Bog’bon uch kun davomida o’nta daraxt ko’chati o’tqazishi lozim. Agar bog’bon bir kunda eng kamida bitta ko’chat o’tqazadigan bo’lsa, u shu ishni kunlar bo’yicha necha xil usul bilan taqsimlashi mumkin? A) 30 B) 25 C) 36 D) 32 11 / 30 Rasmda ko‘rsatilgan ko‘pyoqlardan qaysi birida 4 ta yoq, 6 ta qirra bor? A) 1, 2 B) 3 C) 1, 3 D) 2 12 / 30 7 sonini uchta natural sonlar yig’indisi ko’rinishida necha xil usulda yozish mumkin? A) 6 B) 4 C) 3 D) 5 13 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 13 ga, katetlaridan biri 52 ga teng. Gipotenuzaga tushirilgan balandlik uzunligini toping A) 7 B) 6 C) 4 D) 5 14 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping. A) 16 B) 18 C) 14 D) 17 15 / 30 Agar f(x)=ax3-5x2+b va bo’lsa, a ni toping. A) 2 B) 3 C) 0 D) 1 16 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4760 B) 4716 C) 4720 D) 4680 17 / 30 Ushbu funksiyaning boshlang’ich funksiyasini toping. A) ln(|x+4*|x-1|)+c B) ln(|x+4+|x-1|)+c C) ln|x+4/x-1|+c D) ln|x-1/x+4|+c 18 / 30 sistema a ning qanday qiymatida cheksiz ko’p yechimga ega? A) 6 B) (-∞;6) C) (2;∞) D) (-∞;6])v[6;∞) 19 / 30 Ushbu arifmetik progressiyaning manfiy hadlari yig’indisini toping. A) -0,75 B) -0,25 C) -1 D) -0,5 20 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) 8√2π/5 B) 64√2π/3 C) 3√2π/4 D) (5√3+3)π/3 21 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 2 yoki 50 B) 50 C) 10 yoki 50 D) 10 22 / 30 y= funktsiyaning aniqlanish sohasini toping. A) (-∞;2)v(2;∞) B) [2;∞) C) (2;∞) D) (-∞;2) 23 / 30 Bekzodda 50 so’m va Sobirda 70 so’m pul bor edi. Anvar Bekzodga o’z pulining 10 foizini bergandan so’ng, Bekzod Sobirga pulining yarmini berdi. So’ng Sobir Anvarga pulining 10 foizini berdi. Anvar o’zidagi pullarini hisoblab, pullari dastlabki holdagi puli bilan teng ekanligini bildi. Anvarda qancha pul bo’lgan? A) 400 B) 375 C) 127 D) 100 24 / 30 Tenglamaning ildizlari yig’indisi va ko’paytmasining yig’indisini toping. |x+1|.|x-4|=5 A) -6 B) -3 C) 9 D) 6 25 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 1; 2; 1,5; 1,2 ga teng bo’ladigan barcha to’g’ri to’rtburchaklar sonini toping A) 0 B) cheksiz ko’p C) 2 D) 1 26 / 30 a=sin 1; b=sin 2; c=sin 3; d=sin 4 va e=sin 5 sonlarni kamayish tartibida joylashtiring. A) a>b>c>d>e B) e>b>a>d>c C) b>c>a>d>e D) b>a>c>d>e 27 / 30 x2-5|x|-6=0 tenglama ildizini toping A) ±;±6 B) -1;-6 C) -1;6 D) ±6 28 / 30 bo’lsa, ni x orqali ifodalang. A) 25/x B) x/25 C) 2-x D) 2/x 29 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) 1 B) 1,5 C) √3/2 D) √5/2 30 / 30 Agar bank qo’yilgan pulga 40% yillik bersa, qo’yilgan 4500 so’m pul bir yildan so’ng qancha bo’ladi? A) 6100 B) 6200 C) 6300 D) 6000 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz