Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 141 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 7 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 13 ga, katetlaridan biri 52 ga teng. Gipotenuzaga tushirilgan balandlik uzunligini toping A) 6 B) 5 C) 4 D) 7 2 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 2 yoki 50 B) 50 C) 10 yoki 50 D) 10 3 / 30 Bir vaqtning o’zida 9,13, . . . ,405 va 15,21, . . . ,255 ketma–ketliklarning hadlari bo’lgan sonlarning eng kattasi va eng kichigining ayirmasini toping A) 150 B) 228 C) 231 D) 147 4 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping. A) 14 B) 18 C) 17 D) 16 5 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 10 B) 12 C) 11 D) 9 6 / 30 Ushbu funksiyaning boshlang’ich funksiyasini toping. A) ln|x-1/x+4|+c B) ln(|x+4*|x-1|)+c C) ln(|x+4+|x-1|)+c D) ln|x+4/x-1|+c 7 / 30 Agar f(x)=ax3-5x2+b va bo’lsa, a ni toping. A) 2 B) 0 C) 1 D) 3 8 / 30 sistema yagona yechimga ega bo’ladigan a ning barcha qiymatlari to’plamini toping. A) {-1;2} B) {2;4} C) {1;2} D) {-1;3} 9 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 1900 B) 2000 C) 2200 D) 2100 10 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakning perimetri 48 va aylana radiusi 7 ga teng bo‘lsa, u holda kesma uzunligini toping A) 30 B) 15 C) 12 D) 25 11 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) √2 B) 2 C) 2√2 D) 4 12 / 30 Qaysi javobda faqat juft funksiyalar ko’rsatilgan? A) 1, 3 B) 1,4 C) 3, 4 D) 2, 3 13 / 30 Rombning balandligi 8 ga dioganallarining ko’paytmasi 80 ga teng. Rombning perimetrini toping A) 24 B) 16 C) 32 D) 20 14 / 30 Tenglamaning ildizlari yig`indisini toping. A) 6 B) 3 C) 4 D) 5 15 / 30 To’rtburchakli muntazam piramidaning yon qirrasidagi ikki yoqli burchak 120 ga teng. Diagonal kesimining yuzasi S ga teng bo’lsa, uning yon sirtini toping. A) 4S B) 3S C) 2S D) 0,5S 16 / 30 Parallelogrammning tomonlari nisbati 3:5 kabi. Agar parallelogrmmning perimetri 48 ga burchaklaridan biri 1200 ga teng bo’lsa, uning yuzini toping. A) 48√3 B) 67,5√3 C) 67,5 D) 135√3/4 17 / 30 a ning qanday qiymatlarida ushbu 7x-a-13=(a-5)(x+7) tenglama yagona yechimga ega A) a≠5 B) a ning bunday qiymati yo’q C) a≠12 D) a=12 18 / 30 m ning qanday eng katta butun qiymatida y=2x-mx-5+m funksiyaning grafigi 1,3,4 –choraklarda yotadi? A) 2 B) 1 C) 5 D) 3 19 / 30 tenglamalar sistemasini yeching A) (–4;3) B) (3;–4) C) (4;–3) D) (4;3) 20 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4680 B) 4760 C) 4716 D) 4720 21 / 30 Hisoblang A) √3 B) 3√3 C) 2√3 D) 1 22 / 30 x2-5|x|-6=0 tenglama ildizini toping A) ±6 B) ±;±6 C) -1;6 D) -1;-6 23 / 30 sistemadan x+y+z ning qiymatini toping. A) 150/41 B) -139/41 C) 139/41 D) 140/41 24 / 30 x(t)=t2+7t-6 qonuniyat bo’yicha harakatlanayotgan moddiy nuqtaning tezligi harakat boshlangandan necha sekund o’tgach 87 m/s ga teng bo’ladi? A) 54 B) 36 C) 40 D) 50 25 / 30 7 sonini uchta natural sonlar yig’indisi ko’rinishida necha xil usulda yozish mumkin? A) 5 B) 4 C) 3 D) 6 26 / 30 funktsiyaning aniqlanish sohasini toping. A) (-∞;1]v[2;∞) B) (1;2) C) (-∞;1)v(2;∞) D) [1;2] 27 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 3π/2 B) 2π/3 C) 3π/4 D) 4π/3 28 / 30 ABC muntazam uchburchak ichidan ixtiyoriy P nuqta olinib, undan BC, CA va AB tomonlarga mos ravishda PD, PE va PF perpendikulyarlar tushirilgan bo’lsa,ni toping. A) 1/√2 B) 1 C) 1/√3 D) 0,5 29 / 30 a ning 7x-a-13=(a-5)(x+7) tenglama yechimga ega bo’lmaydigan qiymatining natural bo’luvchilar sonini toping. A) 8 B) 4 C) 6 D) 12 30 / 30 |x2-5x-14|+20≥5|x+2|+4|x-7| tengsizlikni yeching. A) [1;6] B) [2;4]v{2}v[3;∞) C) (-∞;-6]v{2}v[12;∞) D) [-2;4]v{6} 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz