Matematika abituriyent testi №1

7
Tomonidan yaratilgan InfoMaster

Matematika abituriyentlar uchun №1

1 / 30

sistema a ning qanday qiymatida cheksiz ko’p yechimga ega?

2 / 30

Ifodani soddalashtiring.  [ln(ln x)-ln(loge10)].log10e

3 / 30

Ostki asosining yuzi 32π va ustki asosining yuzi 18π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning sirtini toping.

4 / 30

Agar f(x)=ax3-5x2+b va bo’lsa, a ni toping.

5 / 30

Parallelogrammning yuzi  213  ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping

6 / 30

Hisoblang

7 / 30

Ifodani soddalashtiring.

2 cos55o.cos40o.sin55o+cos110o.sin40o

8 / 30

Tenglamaning ildizlari yig`indisini toping.

9 / 30

To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping.

10 / 30

Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping.

11 / 30

Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2  ifodaning eng kichik qiymatini toping.

12 / 30

ABCD kvadrat ichidan olingan O nuqtadan A, B, C uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5 ga teng bo’lsa, u holda OD kesma uzunligini toping.

13 / 30

AA1A2A3A4A5A6 muntazam oltiburchakli piramidaning hajmi  ga va balandligi 2 ga teng bo‘lsa, u holda AA2A6 kesim yuzini toping.

14 / 30

Teng yonli trpetsiyaning asoslari 15 va 25 ga balandligi esa 15 ga teng trapetsiyaning dioganalini toping

15 / 30

Tomoni 25  ga diagonallaridan biri 4 ga teng bo’lgan rombning yuzini toping.

16 / 30

Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusidan katta bo’lgan uchburchaklar sonini toping.

 

17 / 30

Yuzasi 10 ga teng bo’lgan kvadratning ketma-ket ikki uchidan o’tuvchi aylana chizilgan. Uchinchi uchidan aylanaga urunma o’tkazilgan. Urunma tomondan ikki marta katta bo’lsa, aylana radiusini toping.

18 / 30

Rombning balandligi 8 ga dioganallarining ko’paytmasi 80 ga teng. Rombning perimetrini toping

19 / 30

sistemadan x+y+z ning qiymatini toping.

20 / 30

ABC muntazam uchburchak ichidan ixtiyoriy P nuqta olinib, undan BC, CA va AB tomonlarga mos ravishda PD, PE va PF perpendikulyarlar tushirilgan bo’lsa,ni toping.

21 / 30

Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping.

22 / 30

Agar bank qo’yilgan pulga 40% yillik bersa, qo’yilgan 4500 so’m pul bir yildan so’ng qancha bo’ladi?

23 / 30

Anvar tub son o’yladi va o’ylagan sonini 5 ga ko’paytirib, 8 ni ayirgan edi, yana tub son hosil bo’ldi. Anvar qanday son o’ylagan?

24 / 30

Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor?

25 / 30

x(t)=t2+7t-6 qonuniyat bo’yicha harakatlanayotgan moddiy nuqtaning tezligi harakat boshlangandan necha sekund o’tgach 87 m/s ga teng bo’ladi?

26 / 30

Markazi  nuqtada bo‘lgan aylanaga  va  urinmalar o‘tkazilgan bo’lib,  va  nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma  va  kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar  uchburchakning perimetri 48 va aylana radiusi 7 ga teng bo‘lsa, u holda  kesma uzunligini toping

27 / 30

Quyidagi 2x-y+3z=2018  va  x+5y+z=2019 tekisliklarning holatini aniqlang.

28 / 30

To’g’ri burchakli uchburchakning gipotenuzasi 13 ga, katetlaridan biri 52  ga teng. Gipotenuzaga tushirilgan balandlik uzunligini toping

29 / 30

Bog’bon uch kun davomida o’nta daraxt ko’chati o’tqazishi lozim. Agar bog’bon bir kunda eng kamida bitta ko’chat o’tqazadigan bo’lsa, u shu ishni kunlar bo’yicha necha xil usul bilan taqsimlashi mumkin?

30 / 30

a=sin 1; b=sin 2; c=sin 3; d=sin 4 va  e=sin 5  sonlarni kamayish tartibida joylashtiring.

0%

Baholash mezoni

To'g'ri javob uchun 3,1 ball.

InfoMaster
Author: InfoMaster

Foydali bo'lsa mamnunmiz

1 Izoh

Javob qoldiring

Info-Master.uz
Logo
Elementlarni Solishtiring
  • Jami (0)
Solishtiring
0