Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 129 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 4 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 48 B) 54 C) 52 D) 108 2 / 30 Teng yonli trpetsiyaning asoslari 15 va 25 ga balandligi esa 15 ga teng trapetsiyaning dioganalini toping A) 25 B) 20 C) 30 D) 28 3 / 30 Ag ar tgα=2 bo’lsa, u holda ni hisoblang A) -10/3 B) -10/27 C) 10/3 D) 10/27 4 / 30 ABC muntazam uchburchak ichidan ixtiyoriy P nuqta olinib, undan BC, CA va AB tomonlarga mos ravishda PD, PE va PF perpendikulyarlar tushirilgan bo’lsa,ni toping. A) 0,5 B) 1/√2 C) 1 D) 1/√3 5 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5, 6 ga teng bo’lsa, u holda AB tomon uzunligini toping. A) √7 B) bunday to’gri to’rtburchak mavjud emas C) √37 D) 2 6 / 30 a=sin 1; b=sin 2; c=sin 3; d=sin 4 va e=sin 5 sonlarni kamayish tartibida joylashtiring. A) b>c>a>d>e B) b>a>c>d>e C) e>b>a>d>c D) a>b>c>d>e 7 / 30 Sin9x =4sin3x tenglamani yeching A) πn, n€Ζ B) πn/3, n€Ζ C) π/2+πn, n€Ζ D) π/3+πn, n€Ζ 8 / 30 sistema yagona yechimga ega bo’ladigan a ning barcha qiymatlari to’plamini toping. A) {1;2} B) {-1;3} C) {-1;2} D) {2;4} 9 / 30 Rasmda ko‘rsatilgan ko‘pyoqlardan qaysi birida 4 ta yoq, 6 ta qirra bor? A) 3 B) 2 C) 1, 3 D) 1, 2 10 / 30 To’rtburchakli muntazam piramidaning yon qirrasidagi ikki yoqli burchak 120 ga teng. Diagonal kesimining yuzasi S ga teng bo’lsa, uning yon sirtini toping. A) 2S B) 4S C) 0,5S D) 3S 11 / 30 bo’lsa ni toping. Bunda funksiya f(x) ga teskari funksiya. A) -14 B) -4 C) -12 D) -10 12 / 30 Parallelogrammning tomonlari nisbati 3:5 kabi. Agar parallelogrmmning perimetri 48 ga burchaklaridan biri 1200 ga teng bo’lsa, uning yuzini toping. A) 67,5 B) 67,5√3 C) 48√3 D) 135√3/4 13 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 72° B) 60° C) 30° D) 90° 14 / 30 ifodaning qiymatini toping. A) -0,5 B) -2 C) 0,5 D) 0 15 / 30 n ning qanday qiymatida ushbu 81 .82 .83 .….8n=51222 tenglik o’rinli bo’ladi? A) 14 B) 12 C) 11 D) 10 16 / 30 Tengsizlik nechta butun yechimga ega? A) 1 B) 4 C) cheksiz ko’p D) 3 17 / 30 y= funktsiyaning aniqlanish sohasini toping. A) (2;∞) B) (-∞;2)v(2;∞) C) (-∞;2) D) [2;∞) 18 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 9 B) 10 C) 12 D) 11 19 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 36 B) 32 C) 38 D) 42 20 / 30 Ushbu arifmetik progressiyaning manfiy hadlari yig’indisini toping. A) -1 B) -0,75 C) -0,5 D) -0,25 21 / 30 x(t)=t2+6t+5 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakat boshlangandan necha sekund o’tgach boshlang’ich nuqtaga nisbatan 77 metr masofaga siljiydi? A) 8 B) 10 C) 6 D) 7 22 / 30 |x2-5x-14|+20≥5|x+2|+4|x-7| tengsizlikni yeching. A) [-2;4]v{6} B) (-∞;-6]v{2}v[12;∞) C) [1;6] D) [2;4]v{2}v[3;∞) 23 / 30 y=cos(2sinx) funksiyaning qiymatlar sohasini toping. A) [cos2;1] B) [-1;1] C) [0;cos2] D) [0;1] 24 / 30 Qaysi javobda faqat juft funksiyalar ko’rsatilgan? A) 3, 4 B) 2, 3 C) 1,4 D) 1, 3 25 / 30 Agar arctga+ arctgb + arctgc= bo’lsa, a+b+c ni toping. A) abc B) ab/c C) 1 D) ab 26 / 30 To’g’ri burchakli uchburchakning yuzi 24 ga, katetlaridan biri 6 ga teng bo’lsa, gipotenuzasini toping A) 11 B) √46 C) 10 D) 12 27 / 30 Agar bank qo`yilgan pulga 40% yillik foyda bersa, qo`yilgan 5000 so`m pul bir yildan keyin qancha bo`ladi ? A) 6200 B) 7000 C) 7200 D) 6900 28 / 30 Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY uchburchak qanday uchburchak bo‘ladi? A) to`g`ri burchakli uchburchak B) teng yonli uchburchak C) ixtiyoriy uchburchak D) muntazam uchburchak 29 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) lg(ln x) B) lg(lg x) C) ln(ln x) D) ln(lg x) 30 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²/4sin²α B) πa²(1-2sinα/4sin²) C) πa²/4cos²α D) πa²(1+2cosα/4sin²) 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz