Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 134 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 4 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Bekzodda 50 so’m va Sobirda 70 so’m pul bor edi. Anvar Bekzodga o’z pulining 10 foizini bergandan so’ng, Bekzod Sobirga pulining yarmini berdi. So’ng Sobir Anvarga pulining 10 foizini berdi. Anvar o’zidagi pullarini hisoblab, pullari dastlabki holdagi puli bilan teng ekanligini bildi. Anvarda qancha pul bo’lgan? A) 100 B) 127 C) 375 D) 400 2 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (4; -3) B) (-7;-1) C) (-7; 1) D) (7; 1) 3 / 30 “Tutgan balig‘ining og‘irligi qancha?” degan savolga baliqchi: “Baliqning dumi 3 kg, boshi uning dumi hamda tanasi yarmining og‘irligiga teng, tanasi esa boshi va dumining og‘irligiga teng”, deb javob berdi. Baliqning og‘irligini (kg) toping. A) 18 B) 6 C) 3 D) 12 4 / 30 y=cos(2sinx) funksiyaning qiymatlar sohasini toping. A) [cos2;1] B) [0;1] C) [0;cos2] D) [-1;1] 5 / 30 Radiusi 25 bo’lgan doirada 48 ga teng vatar o’tkazilgan. Doira markazidan shu vatargacha masofani toping. A) 7 B) 9 C) 8 D) 10 6 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) to’gri burchakli uchburchak B) o’tmas burchakli uchburchak C) teng tomonli uchburchak D) o’tkir burchakli uchburchak 7 / 30 O’qishni bilmaydigan bola alifbening A,A,A, N,N, S- 6 ta harflarini ixtiyoriy ravishda terib chiqadi. Bunda ANANAS so’zining hosil bo’lish ehtimolini toping. A) 5/24 B) 1/60 C) 6/720 D) 5/720 8 / 30 sonning oxirgi raqamini toping. A) 2 B) 8 C) 6 D) 4 9 / 30 Tenglamaning ildizlari yig`indisini toping. A) 6 B) 5 C) 3 D) 4 10 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5, 6 ga teng bo’lsa, u holda AB tomon uzunligini toping. A) 2 B) bunday to’gri to’rtburchak mavjud emas C) √7 D) √37 11 / 30 A) √6 B) 0 C) 2 D) 1 12 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) 4sin2x*cos(cos2x) B) -4sin2x*cos(cos2x) C) -4sin2x*cos(2cos2x) D) 4sin2x*cos(2cos2x) 13 / 30 Hisoblang A) 2√3 B) 1 C) √3 D) 3√3 14 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 60° B) 90° C) 72° D) 30° 15 / 30 Soddalashtiring. (0<m<7) A) 7-2m B) 7 C) m D) 2m-7 16 / 30 Tomoni 6 ga teng bo`lgan teng tomonli uchburchakga tashqi chizilgan doiraning yuzini toping. A) 12π B) 6 π C) 7 π D) 10 π 17 / 30 Fazoda (1;2;3) nuqtalardan o’tuvchi to’g’ri chiziq tenglamasini tuzing. A) x=y/3=z/2 B) -x-y+z=0 C) x-1/2=y-2/3=z-3/4 D) 2x+3y+z=0 18 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 1900 B) 2200 C) 2100 D) 2000 19 / 30 Hisoblang A) √3/2 B) 1/2 C) 2 D) √3 20 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 10 B) 50 C) 10 yoki 50 D) 2 yoki 50 21 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 13 ga, katetlaridan biri 52 ga teng. Gipotenuzaga tushirilgan balandlik uzunligini toping A) 4 B) 7 C) 6 D) 5 22 / 30 Tengsizlik nechta butun yechimga ega? A) 3 B) 1 C) 4 D) cheksiz ko’p 23 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 120 B) 47 C) 18 D) 60 24 / 30 ABCD kvadrat ichidan olingan O nuqtadan A, B, C uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5 ga teng bo’lsa, u holda OD kesma uzunligini toping. A) √37 B) √32 C) 6 D) 3 25 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4720 B) 4760 C) 4680 D) 4716 26 / 30 ABC muntazam uchburchak ichidan ixtiyoriy P nuqta olinib, undan BC, CA va AB tomonlarga mos ravishda PD, PE va PF perpendikulyarlar tushirilgan bo’lsa,ni toping. A) 0,5 B) 1/√3 C) 1 D) 1/√2 27 / 30 Quyidagi 2x-y+3z=2018 va x+5y+z=2019 tekisliklarning holatini aniqlang. A) aniqlab bo’lmaydi B) o’zaro parallel C) o’zaro perpendikulyar D) ayqash 28 / 30 sistemadan x+y ning qiymatini toping. A) 6 B) 12 C) 35/4 D) -12 29 / 30 Agar arctga+ arctgb + arctgc= bo’lsa, a+b+c ni toping. A) 1 B) ab/c C) abc D) ab 30 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 3√3+1/5 B) 2√2/3 C) 5√3+3/3 D) 3√2+2/4 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz