Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 144 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 7 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 ifodaning qiymatini toping. A) -2 B) 0 C) 0,5 D) -0,5 2 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) √3/2 B) √5/2 C) 1 D) 1,5 3 / 30 200 kishidan iborat turistlar guruxida 140 kishi ingliz tilini, 90 kishi nemis tilini va 46 kishi ikkala tilni biladi. Ikkala tilni xam bilmaydigan turistlar necha foizni tashkil qiladi. A) 12 B) 4 C) 8 D) 16 4 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 52√3 B) 108 C) 54 D) 48√3 5 / 30 m ning qanday eng katta butun qiymatida y=2x-mx-5+m funksiyaning grafigi 1,3,4 –choraklarda yotadi? A) 5 B) 2 C) 1 D) 3 6 / 30 Ushbu funksiyaning boshlang’ich funksiyasini toping. A) ln|x+4/x-1|+c B) ln|x-1/x+4|+c C) ln(|x+4+|x-1|)+c D) ln(|x+4*|x-1|)+c 7 / 30 Parallelogrammning tomonlari nisbati 3:5 kabi. Agar parallelogrmmning perimetri 48 ga burchaklaridan biri 1200 ga teng bo’lsa, uning yuzini toping. A) 135√3/4 B) 48√3 C) 67,5√3 D) 67,5 8 / 30 tenglamani yeching. A) 2018 B) 2017 C) 0 D) 2019 9 / 30 x(t)=t2+6t+5 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakat boshlangandan necha sekund o’tgach boshlang’ich nuqtaga nisbatan 77 metr masofaga siljiydi? A) 8 B) 6 C) 7 D) 10 10 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (7; 1) B) (-7;-1) C) (4; -3) D) (-7; 1) 11 / 30 Quyidagi 2x-y+3z=2018 va x+5y+z=2019 tekisliklarning holatini aniqlang. A) aniqlab bo’lmaydi B) o’zaro parallel C) ayqash D) o’zaro perpendikulyar 12 / 30 Teng yonli uchburchakning tomonlari 5, 5 va 6 ga teng. Bu uchburchakning bissektiritsalari va medianalari kesishgan nuqtalar A) 1 B) 1,2 C) 1/2 D) 1/6 13 / 30 Yuzasi 10 ga teng bo’lgan kvadratning ketma-ket ikki uchidan o’tuvchi aylana chizilgan. Uchinchi uchidan aylanaga urunma o’tkazilgan. Urunma tomondan ikki marta katta bo’lsa, aylana radiusini toping. A) 10 B) 4 C) 6 D) 5 14 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping. A) 18 B) 14 C) 17 D) 16 15 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) -4sin2x*cos(2cos2x) B) 4sin2x*cos(2cos2x) C) 4sin2x*cos(cos2x) D) -4sin2x*cos(cos2x) 16 / 30 y= funksiyaning aniqlanish sohasini toping A) (-∞;0)v(2;∞) B) (2;∞) C) (0,2) D) (-∞;0])v[2;∞) 17 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4716 B) 4680 C) 4720 D) 4760 18 / 30 Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY uchburchak qanday uchburchak bo‘ladi? A) to`g`ri burchakli uchburchak B) ixtiyoriy uchburchak C) teng yonli uchburchak D) muntazam uchburchak 19 / 30 AA1A2A3A4A5A6 muntazam oltiburchakli piramidaning hajmi ga va balandligi 2 ga teng bo‘lsa, u holda AA2A6 kesim yuzini toping. A) 3 B) √15 C) √5 D) 2 20 / 30 Hisoblang. A) 17/34 B) 2/17 C) 2/34 D) 15/34 21 / 30 A) 1 B) 3 C) 5 D) 2 22 / 30 Radiuslari orasidagi burchagi 36o va radiusi 5 ga teng bo`lgan sektor yoyining uzunligini toping. A) π/2 B) 2π/3 C) 2π D) π 23 / 30 |x2-5x-14|+20≥5|x+2|+4|x-7| tengsizlikni yeching. A) [2;4]v{2}v[3;∞) B) (-∞;-6]v{2}v[12;∞) C) [1;6] D) [-2;4]v{6} 24 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 3π/4 B) 4π/3 C) 3π/2 D) 2π/3 25 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 222220175 B) 2222222175 C) 222222222222 D) 22222222220 26 / 30 Tenglamaning ildizlari yig`indisini toping. A) 3 B) 5 C) 6 D) 4 27 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) 2√2 B) 2 C) √2 D) 4 28 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 3 B) 1 C) 4 D) 2 29 / 30 Quyidagi va to’g’ri chiziqlarning o’zaro holatini aniqlang. A) ayqash to’gri chiziqlar B) o’zaro kesishadi C) o’zaro perpendikulyar D) o’zaro parallel 30 / 30 Teng yonli trpetsiyaning asoslari 15 va 25 ga balandligi esa 15 ga teng trapetsiyaning dioganalini toping A) 25 B) 20 C) 30 D) 28 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz