Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 164 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 13 ga, katetlaridan biri 52 ga teng. Gipotenuzaga tushirilgan balandlik uzunligini toping A) 6 B) 4 C) 7 D) 5 2 / 30 7 sonini uchta natural sonlar yig’indisi ko’rinishida necha xil usulda yozish mumkin? A) 5 B) 6 C) 3 D) 4 3 / 30 x(t)=t2+6t+5 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakat boshlangandan necha sekund o’tgach boshlang’ich nuqtaga nisbatan 77 metr masofaga siljiydi? A) 6 B) 8 C) 7 D) 10 4 / 30 Soat 3:37 bo’lganda minut va soat millari orasidagi burchakni toping. A) 100° B) 113,5° C) 113° D) 112,5° 5 / 30 Agar arctga+ arctgb + arctgc= bo’lsa, a+b+c ni toping. A) ab B) 1 C) ab/c D) abc 6 / 30 Hisoblang A) 1 B) 0 C) -1 D) 2 7 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 52√3 B) 48√3 C) 54 D) 108 8 / 30 sistemadan x+y ning qiymatini toping. A) -12 B) 12 C) 35/4 D) 6 9 / 30 Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY uchburchak qanday uchburchak bo‘ladi? A) teng yonli uchburchak B) muntazam uchburchak C) to`g`ri burchakli uchburchak D) ixtiyoriy uchburchak 10 / 30 Tenglamani yeching. |x2-11x+10|=x2-11x+10 A) (-∞;1] B) [10;∞) C) (-∞;1]v[10;∞) D) 1; 10 11 / 30 a ning 7x-a-13=(a-5)(x+7) tenglama yechimga ega bo’lmaydigan qiymatining natural bo’luvchilar sonini toping. A) 8 B) 12 C) 4 D) 6 12 / 30 y= funktsiyaning aniqlanish sohasini toping. A) (-∞;2) B) [2;∞) C) (-∞;2)v(2;∞) D) (2;∞) 13 / 30 Tenglamaning nechta ildizi bor? |x+1|=|2x-1| A) 1 B) 2 C) 3 D) 4 14 / 30 Ag ar tgα=2 bo’lsa, u holda ni hisoblang A) 10/27 B) -10/27 C) 10/3 D) -10/3 15 / 30 bo’lsa ni toping. Bunda funksiya f(x) ga teskari funksiya. A) -10 B) -4 C) -12 D) -14 16 / 30 200 kishidan iborat turistlar guruxida 140 kishi ingliz tilini, 90 kishi nemis tilini va 46 kishi ikkala tilni biladi. Ikkala tilni xam bilmaydigan turistlar necha foizni tashkil qiladi. A) 12 B) 4 C) 8 D) 16 17 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 2100 B) 2200 C) 2000 D) 1900 18 / 30 sistemadan x+y+z ning qiymatini toping. A) -139/41 B) 139/41 C) 140/41 D) 150/41 19 / 30 ABCD kvadrat ichidan olingan O nuqtadan A, B, C uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5 ga teng bo’lsa, u holda OD kesma uzunligini toping. A) √32 B) 6 C) 3 D) √37 20 / 30 ABC muntazam uchburchak ichidan ixtiyoriy P nuqta olinib, undan BC, CA va AB tomonlarga mos ravishda PD, PE va PF perpendikulyarlar tushirilgan bo’lsa,ni toping. A) 0,5 B) 1 C) 1/√2 D) 1/√3 21 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) ln(ln x) B) lg(lg x) C) ln(lg x) D) lg(ln x) 22 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 3π/4 B) 4π/3 C) 3π/2 D) 2π/3 23 / 30 bo’lsa, ni x orqali ifodalang. A) 2/x B) 25/x C) 2-x D) x/25 24 / 30 Tomoni 25 ga diagonallaridan biri 4 ga teng bo’lgan rombning yuzini toping. A) 32 B) 24√5 C) 8√5 D) 16 25 / 30 y=cos(2sinx) funksiyaning qiymatlar sohasini toping. A) [0;cos2] B) [-1;1] C) [0;1] D) [cos2;1] 26 / 30 sistema yagona yechimga ega bo’ladigan a ning barcha qiymatlari to’plamini toping. A) {-1;2} B) {1;2} C) {-1;3} D) {2;4} 27 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping. A) 18 B) 16 C) 14 D) 17 28 / 30 Quyidagi 2x-y+3z=2018 va x+5y+z=2019 tekisliklarning holatini aniqlang. A) aniqlab bo’lmaydi B) o’zaro parallel C) o’zaro perpendikulyar D) ayqash 29 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 1; 2; 1,5; 1,2 ga teng bo’ladigan barcha to’g’ri to’rtburchaklar sonini toping A) 1 B) 0 C) 2 D) cheksiz ko’p 30 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²(1-2sinα/4sin²) B) πa²/4sin²α C) πa²/4cos²α D) πa²(1+2cosα/4sin²) 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz