Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 127 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 3 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusidan katta bo’lgan uchburchaklar sonini toping. A) 1 B) 0 C) cheksiz ko’p D) 2019 2 / 30 sistemadan x+y ning qiymatini toping. A) -12 B) 6 C) 12 D) 35/4 3 / 30 bo’lsa, ni x orqali ifodalang. A) 2-x B) 25/x C) x/25 D) 2/x 4 / 30 |x2-5x-14|+20≥5|x+2|+4|x-7| tengsizlikni yeching. A) [2;4]v{2}v[3;∞) B) [-2;4]v{6} C) (-∞;-6]v{2}v[12;∞) D) [1;6] 5 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) o’tmas burchakli uchburchak B) to’gri burchakli uchburchak C) o’tkir burchakli uchburchak D) teng tomonli uchburchak 6 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) lg(ln x) B) ln(ln x) C) lg(lg x) D) ln(lg x) 7 / 30 Muntazam uchburchakli piramidaning yon qirrasi asos tekisligi bilan 45o li burchak tashkil etgan bo‘lsa, u holda piramidaning yon sirti yuzining uning asosi yuziga nisbatini toping. A) 4 B) 2√5 C) 3√3 D) 2√3 8 / 30 integralning qiymatini toping. A) π/2 B) π/4 C) 0 D) -π/2 9 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 4π/3 B) 3π/4 C) 3π/2 D) 2π/3 10 / 30 sonning oxirgi raqamini toping. A) 8 B) 2 C) 6 D) 4 11 / 30 Ushbu arifmetik progressiyaning manfiy hadlari yig’indisini toping. A) -0,25 B) -1 C) -0,5 D) -0,75 12 / 30 Tenglamani yeching. (x+2)+(x+4)+(x+6)+…+(x+100)=2800 A) 7 B) 4 C) 5 D) 3 13 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²/4sin²α B) πa²(1-2sinα/4sin²) C) πa²(1+2cosα/4sin²) D) πa²/4cos²α 14 / 30 m ning qanday eng katta butun qiymatida y=2x-mx-5+m funksiyaning grafigi 1,3,4 –choraklarda yotadi? A) 3 B) 5 C) 2 D) 1 15 / 30 x2-5|x|-6=0 tenglama ildizini toping A) -1;6 B) ±6 C) -1;-6 D) ±;±6 16 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 10 yoki 50 B) 2 yoki 50 C) 10 D) 50 17 / 30 7 sonini uchta natural sonlar yig’indisi ko’rinishida necha xil usulda yozish mumkin? A) 3 B) 6 C) 5 D) 4 18 / 30 Fazoda (1;2;3) nuqtalardan o’tuvchi to’g’ri chiziq tenglamasini tuzing. A) x=y/3=z/2 B) 2x+3y+z=0 C) x-1/2=y-2/3=z-3/4 D) -x-y+z=0 19 / 30 AA1A2A3A4A5A6 muntazam oltiburchakli piramidaning hajmi ga va balandligi 2 ga teng bo‘lsa, u holda AA2A6 kesim yuzini toping. A) 2 B) 3 C) √15 D) √5 20 / 30 Tenglamaning ildizlari yig’indisi va ko’paytmasining yig’indisini toping. |x+1|.|x-4|=5 A) 9 B) 6 C) -6 D) -3 21 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) 1 B) √3 C) 2 D) √2 22 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping. A) 14 B) 18 C) 16 D) 17 23 / 30 Agar sinx+cosx=a bo’lsa, ning qiymatini toping. A) 2/5 B) 1/3 C) 1/2 D) -1/2 24 / 30 x(t)=t2+7t-6 qonuniyat bo’yicha harakatlanayotgan moddiy nuqtaning tezligi harakat boshlangandan necha sekund o’tgach 87 m/s ga teng bo’ladi? A) 36 B) 54 C) 50 D) 40 25 / 30 tenglamalar sistemasini yeching A) (4;–3) B) (–4;3) C) (4;3) D) (3;–4) 26 / 30 Radiuslari orasidagi burchagi 36o va radiusi 5 ga teng bo`lgan sektor yoyining uzunligini toping. A) 2π B) 2π/3 C) π/2 D) π 27 / 30 Qaysi javobda faqat juft funksiyalar ko’rsatilgan? A) 1,4 B) 1, 3 C) 2, 3 D) 3, 4 28 / 30 Agar f(x)=4x3-6x2-2x+3x .log3e bo’lsa, u holda ni toping. A) e B) 3e C) √2e D) 1 29 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4760 B) 4720 C) 4716 D) 4680 30 / 30 Agar va b-a=4 bo’lsa, a+b ni toping. A) 3,5 B) 2 C) 3 D) 4 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz