Uy » Attestatsiya testlar » Matematika attestatsiya » Matematika attestatsiya №4 Matematika attestatsiya Matematika attestatsiya №4 InfoMaster Yanvar 21, 2022 46 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0% 1 ovozlar, 1 avg 0 12345678910111213141516171819202122232425262728293031323334353637383940 Matematika fanidan attestatsiya savollari №4 1 / 40 Agar ni hisoblang. A) 8 B) Cheksiz C) 9 D) 0 2 / 40 Muntazam oltiburchakning tomoni 2√6 ga teng. Shu ko‘pburchakka tengdosh bo‘lgan teng tomonli uchburchakning tomonini toping. A) 24 B) 30 C) 12 D) 18 3 / 40 Kamayish tartibida joylashtiring. a)5√6 b)12 c)4√10 A) a>b>c B) b>a>c C) c>a>b D) a>c>b 4 / 40 |x+1|=2|x–2| tenglamaning ildizlari yig’indisini toping. A) 6 B) 0 C) 7 D) 5 5 / 40 tengsizlikning barcha butun yechimlari yig‘indisining natural bo’luvchilari yig‘indisi topilsin. A) 21 B) 24 C) 32 D) 28 6 / 40 Agar a>0 bo'lsa, funksiyaning vertikal asimptotasini toping. A) x=-a B) y=-a C) x=a D) y=1-a 7 / 40 Aniq integralni hisoblang: A) 0 B) 3 C) 0,5 D) 2 8 / 40 Hisoblang: A) 7 B) 27 C) 9 D) 4 9 / 40 Muntazam uchburchak ichidan olingan nuqtadan uchburchak tomonlarigacha bo'lgan masofalar mos holda c(2;3;1), b(1;2;1) va a(1;2;3) vektorlarning absolut qiymatlariga teng bo'lsa, uchburchakning balandligini toping. A) 16 B) √6+√14 C) 2√14+√6 D) 18 10 / 40 cosx=0,2x tenglama nechta yechimga ega? A) 2 B) 3 C) 4 D) 1 11 / 40 Quyidakilardan qaysi biri juft: 200956+200855 31210+0! 55!+877 222+333+4444 A) 4 B) 2 C) 3 D) 1 12 / 40 Quyida berilgan shakillar ichidagi sonlar yig`indisi nolgateng bo`lishi uchun . Nechanchi shakilni olib tashlash kerak? A) 3 B) 2 C) 4 D) 1 13 / 40 Hisoblang 200−199+198−197+⋯+4−3 A) 100 B) 98 C) 99 D) 101 14 / 40 Quyidagi rasmda konus va silindr zaytun moyi bilanto`ldirilmoqda . Ikkala shaklning balandliklari va taglik doiralarining radiuslari teng uzunlikda 2sm . Shunga ko`ra idishga jami necha ?m³ A) (28π)/3 B) (29π)/3 C) (32π)/3 D) 11π 15 / 40 n ning qanday qiymatida tenglik to`g`ri bo’ladi? (73)=715 A) 5 B) 12 C) 7 D) 1 16 / 40 Yig‘indini toping. A) 1/9 B) 1/4 C) 1/6 D) 1/12 17 / 40 Quyidagi sonini 9 ga bo‘lganda qoladigan qoldiqni toping. A) 5 B) 8 C) 1 D) 0 18 / 40 Agar f(x) funksiya (-∞;∞) da qat’iy o‘suvchi funksiya bo‘lsa, y =3 f(x)-8 funksiya uchun quyidagi mulohazalardan qaysi biri to‘g‘ri bo‘ladi? A) qat’iy kamayuvchi B) qat’iy o‘suvchi C) dastlab o‘sadi, keyin kamayadi D) dastlab kamayadi, keyin o‘sadi 19 / 40 Aylana tashqarisidagi nuqtadan aylanaga kesuvchi o‘tkazilgan. Berilgan nuqtadan aylanani kesgan nuqtalarigacha bo‘lgan masofalar mos ravishda 9 va 45 ga teng bo‘lsa, shu nuqtadan aylanaga o‘tkazilgan urinmaning urinish nuqtasigacha bo‘lgan masofa uzunligini toping. A) 8√3 B) 6√5 C) 9√5 D) 12√3 20 / 40 f(x)+f(3x)+f(5x)+...+f(39x)=(3x+10)4 bo'lsa, f'(0) ni toping. A) 0 B) 10 C) 30 D) 25 21 / 40 Tenglamani yeching: A) 5*4 B) 5/9 C) 6/5 D) 9/5 22 / 40 ni hisoblang. A) 2 B) 1 C) 0 D) 3 23 / 40 Burchagi 120° ga teng bo‘lgan doiraviy sektorga ichki doira chizilgan. Berilgan doiraning radiusi R ga teng bo‘lsa, yangi doiraning radiusi topilsin. A) 1,5R B) 3R C) R(√3-√2) D) √3R(2-√3) 24 / 40 Tenglamaning natural ildizining butun bo‘luvchilari nechta? A) 5 B) 4 C) 6 D) 2 25 / 40 sin a = x va 1+cos a= y bo‘lsa, x va y o‘zaro qanday bog‘langan? A) 1 B) 3 C) 2 D) 4 26 / 40 Agar tenglamaning ildizi m/n bo‘lsa, m+ n ni toping. Bunda EKUB(m; n)=1. A) 32 B) 41 C) 50 D) 25 27 / 40 Funksiyaning aniqlanish sohasini toping. A) (-∞;3]∪[2;∞) B) (-∞;0)∪(0;∞) C) [-3;2] D) x∈R 28 / 40 Tenglamalar sistemasidan foydalanib x + y + z ni toping: A) 10 B) 6 C) 8 D) berilganlar yetarli emas 29 / 40 f(3x)=x+f(3x-3) va f(3)=1 bo'lsa, f(300) nechaga teng? A) 3600 B) 5050 C) 4800 D) 600 30 / 40 tenglama intervalda nechta ildizga ega? A) 4 B) 3 C) 2 D) 1 31 / 40 x²-n≤0 tengsizlik o‘rinli bo‘ladigan x ning 7 ta butun ildizi bor bo‘lsa. n nechta turli butun qiymat qabul qiladi? A) 15 B) 7 C) 12 D) 9 32 / 40 275+330 sonini 41 ga bo‘lganda qoladigan qoldiqni aniqlang. A) 5 B) 9 C) 1 D) 0 33 / 40 x>0 bo‘lsa, 128x+1/x² yig‘indining eng kichik qiymatini toping. A) 16 B) 32 C) 64 D) 48 34 / 40 To‘g‘ri burchakli uchburchakning bir burchagi 52° ga teng bo‘lsa, to‘g‘ri burchak uchidan tushirilgan balandlik va mediana orasidagi burchakni toping. A) 7° B) 24° C) 17° D) 14° 35 / 40 Hisoblang: A) 0 B) 4 C) 6 D) 8 36 / 40 Agar bo'lsa, ni m orqali ifodalang. A) (4-m)/4 B) (m+4)/4 C) 2/m D) (m+1)/2 37 / 40 a,b,c -1 dan katta musbat sonlar uchun a³=b² va a4=c5 bo'lsa, logbc ni toping. A) 1/3 B) 8/15 C) 5/6 D) 1/2 38 / 40 A, B,C,D, E natural sonlar. Agar EKUB(A,B,C)=10, EKUB(B,C,D,E)=15 bo‘lsa, A+ B+C+D+ E ning eng kichik qiymatini toping. A) 100 B) 90 C) 80 D) 120 39 / 40 Dastlabki n ta hadining yig‘indisi formula bilan aniqlanadigan arifmetik progressiyaning 6-hadini toping. A) 10 B) 9 C) 6 D) 8 40 / 40 ABC o‘tkir burchakli uchburchakda sinA=4/5 va sinB=15/13 bo'lsa, sinC ni qiymatini toping. A) 56/65 B) 40/63 C) 36/65 D) 48/65 O'rtacha ball 0% 0% Testni qayta ishga tushiring Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz
Istaklar ro'yxatiga qo'shildiIstaklar ro'yxatidan olib tashlandi 13 Matematika fanidan attestatsiya savollari №16