Uy » Attestatsiya testlar » Matematika attestatsiya » Matematika attestatsiya №5 Matematika attestatsiya Matematika attestatsiya №5 InfoMaster Yanvar 24, 2022 22 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0% 2 ovozlar, 1 avg 0 12345678910111213141516171819202122232425262728293031323334353637383940 Matematika fanidan attestatsiya savollari №5 1 / 40 y=4cos 2x+cos8x funksiyaning hosilasini toping A) -16cos3x*sin5x B) 16sin3x*cos5x C) 16sin3x*sin5x D) 16cos3x*cos5x 2 / 40 To’g’ri turt burchakning bo’yining perimetriga nisbatini toping. A) 5/3 B) 3/18 C) 1/2 D) -452/18 3 / 40 ko’paytmani hisoblang. A) 10000 B) 86420000 C) 0 D) 480000 4 / 40 f(x)=26sin6x·sin7x funksiya uchun boshlang'ich funksiyasini toping. A) 13cosx-cos13x + C B) 13sinx-sin13x + C C) -13cosx- cos13 x +C D) 13sinx+sin13x + C 5 / 40 Aniq integralni hisoblang: A) 0,5 B) 0 C) 2 D) 3 6 / 40 Hisoblang: A) 4 B) 7 C) 27 D) 9 7 / 40 n ning qanday qiymatida tenglik to`g`ri bo’ladi? (73)=715 A) 5 B) 1 C) 12 D) 7 8 / 40 Shaharlar orasidagi masofa xaritada 5 sm ga teng bo`lsava xaritaning masshtabi 1:4000000 bo`lsa , shaharlar orasidagi haqiqiy masofa qanchaga teng ? A) 20 km B) 200 km C) 2 km D) 0,2km 9 / 40 DC||AB , ∠DCE=45°,∠CEA=x va ∠EAB=115° ga tengbo`lsa x ni toping ? A) 100° B) 120° C) 130° D) 110° 10 / 40 Quyidagi sonini 9 ga bo‘lganda qoladigan qoldiqni toping. A) 1 B) 8 C) 0 D) 5 11 / 40 Integralni hisoblang: A) 4 B) 2 C) 3 D) 1 12 / 40 Burchagi 120° ga teng bo‘lgan doiraviy sektorga ichki doira chizilgan. Berilgan doiraning radiusi R ga teng bo‘lsa, yangi doiraning radiusi topilsin. A) 1,5R B) 3R C) √3R(2-√3) D) R(√3-√2) 13 / 40 kasrning o‘nli kasr ko‘rinishidagi raqamlarining yig‘indisini toping. A) 5 B) 11 C) 7 D) 10 14 / 40 Tenglamalar sistemani yeching: A) (9; 0), (28; -1) B) (7; 2), (28; -1) C) (2; 3) D) (9; 0), (2; 7) 15 / 40 1+sin 2x = 7(sin x + cos x) tenglamani yeching. A) -π/4+πk, k∈Z B) π/4+πk, k∈Z C) 0 D) Ø 16 / 40 Rasmdagi shakl perimetrini toping. A) 28 B) 30 C) 32 D) 24 17 / 40 Tengsizlik nechta butun juft yechimga ega? A) 110 B) 116 C) 112 D) 115 18 / 40 Tenglamalar sistemasining ildizlari yig‘indisini toping. A) 12 B) 10 C) 14 D) 20 19 / 40 tenglamaning ildizlari yig‘indisini (agar ildizi bitta bo‘lsa, o‘zini) toping. A) -2 B) 8 C) 3 D) 5 20 / 40 Chizmadan foydalanib α ni toping. A) 30° B) 20° C) 50° D) 40° 21 / 40 ABC uchburchakning A burchgi 30° ga, B burchagi 75° ga teng. B uchidan AC tomonga BD kesma o‘tkazilgan. ABD burchak 45° ga teng bo‘lsa, quyidagilardan qaysi biri noto‘g‘ri? A) BC > AD B) DC < AD C) AB = BC D) BD = BC 22 / 40 Tenglikdan foydalanib a ni toping. (a+b+c+d)·(a-b-c+d)=(a-b+c-d)·(a+b-c-d) A) bc/d B) cd/b C) 1 D) bd/c 23 / 40 6-(5:3)·(-3)²-(-3)³+15:(-3) hisoblang. A) 15 B) 12 C) 13 D) 14 24 / 40 P(x+1)=x³+3x²-2x+a+3 ko‘phadi berilgan. P(x+2) ko‘phadining koeffitsiyentlari yig‘indisini 8 ga teng bo‘lsa, a nechaga teng? A) -6 B) -3 C) 5 D) -4 25 / 40 A(4;6), B(2;1), C(6;1) nuqtalarni tutashtirishdan hosil bo‘ladigan uchburchak yuzini toping. A) 20 B) 8 C) 15 D) 10 26 / 40 Hisoblang: A) sin10° B) cos50° C) 1 D) cos10° 27 / 40 Ifodaning qiymatini toping. A) 0,0(2) B) 0,0(4) C) 0,(04) D) 0,04 28 / 40 an - arifmetik progressiyaning umumiy hadi bo‘lsa, quyidagi nisbatni toping: A) 8 B) 7 C) 6 D) 5 29 / 40 P(x)=x¹ºº ko‘phadni x³-3x+2 ga bo‘lganda qoladigan qoldiqni toping. 2¹ºº-1 (2¹ºº-1)x+2(299-1) (2¹ºº-1)x-2(299-1) 2¹ººx-3·2100 A) 4 B) 2 C) 1 D) 3 30 / 40 Agar α=60°, β=70°, γ=50° bo‘lsa, tgα+ tgβ+ tgγ yig‘indi quyidagilardan qaysi biriga teng? A) 4 √3tg50° tg70° B) √3ctg40° tg70° C) 2√3tg50° tg70° D) √3tg50° tg70° 31 / 40 Asoslari 5 va 5√7 ga teng bo‘lgan trapetsiyaning yuzini teng ikkiga bo‘luvchi kesma asoslarga parallel. Shu kesma uzunligini toping. A) 4√7 B) 8 C) 10 D) 6√7 32 / 40 Agar geometrik progressiyaning umumiy hadi bn= 3·2n bo‘lsa, ni toping. A) 4 B) 1 C) 2 D) 3 33 / 40 √3 A) 3/2 B) 5/5 C) 21/10 D) 7/3 34 / 40 ABC o‘tkir burchakli uchburchakning BC asosiga AD balandlik, AC yon tomoniga BE balandlik o‘tkazilgan. Bunda CE =2AE = 8, DC = 6 bo‘lsa, BD ni toping. A) 6 B) 10 C) 12 D) 8 35 / 40 sonlari geometrik progressiyaning ketma-ket hadlari bo‘ladigan barcha n larning yig‘indisini (agar bitta qiymati bo‘lsa, o‘zini) toping. A) 23 B) 24 C) 14 D) 35 36 / 40 Sonlarining o‘rta geometrik qiymatini toping. A) 2√2 B) 4√3 C) 2√3 D) 3√2 37 / 40 3x3 o‘lchamli kvadratning tugunlarida 16 ta nuqta belgilanib, ularning o‘ng tomondan eng yuqorisidagi A bilan belgilangan. Bir uchi A nuqtada, qolgan uchlari qolgan 15 ta nuqtada orasidan tanlanadigan uchburchaklarning sonini toping. A) 100 B) 105 C) 25 D) 96 38 / 40 Hisoblang: A) 20/21 B) 10/11 C) 9/10 D) 19/20 39 / 40 x²-√11x+1=0 0 bo‘lsa, A) 9 B) 11 C) 12 D) 10 40 / 40 Tenglamani yeching: A) -6 B) 5 C) 6; -5 D) -6; 5 O'rtacha ball 0% 0% Testni qayta ishga tushiring Fikr-mulohaza yuboring Tomonidan Wordpress Quiz plugin Author: InfoMaster Foydali bo'lsa mamnunmiz
Istaklar ro'yxatiga qo'shildiIstaklar ro'yxatidan olib tashlandi 11 Matematika fanidan attestatsiya savollari №16