Uy » Attestatsiya testlar » Matematika attestatsiya » Matematika attestatsiya №5 Matematika attestatsiya Matematika attestatsiya №5 InfoMaster Yanvar 24, 2022 33 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0% 2 ovozlar, 1 avg 0 12345678910111213141516171819202122232425262728293031323334353637383940 Matematika fanidan attestatsiya savollari №5 1 / 40 Merganning nishonga tekkizish ehtimoli 0,8 ga teng. U ishonga 2 marta o‘q uzganda o‘qlardan biri nishonga tegishining ehtimolligini toping. A) 0,5 B) 0,16 C) 0,8 D) 0,32 2 / 40 Agar bo‘lsa, x ni toping. A) -5 B) 5 C) -2 D) 2 3 / 40 Muntazam oltiburchakning tomoni 2√6 ga teng. Shu ko‘pburchakka tengdosh bo‘lgan teng tomonli uchburchakning tomonini toping. A) 12 B) 24 C) 18 D) 30 4 / 40 Tenglama ildizlari ayirmasining modulini toping. A) 2√5 B) √5 C) √5+5 D) 5 5 / 40 x4+8x3+ax2+bx+1 ko'phadning kvadrati bo'lsa, a va b koeffitiyentlarning barcha qiymatlari yig'indisini toping. A) 27 B) 32 C) 48 D) 26 6 / 40 Arifmetik progressiyada an+1=an+2 va a4=4 bo'lsa, uning dastlabki 12 ta hadini yig'indisini toping. A) 108 B) 96 C) 126 D) 114 7 / 40 Hisoblang? A) 2 B) 0,5 C) 0,25 D) 4 8 / 40 Quyidagi rasmda konus va silindr zaytun moyi bilanto`ldirilmoqda . Ikkala shaklning balandliklari va taglik doiralarining radiuslari teng uzunlikda 2sm . Shunga ko`ra idishga jami necha ?m³ A) (28π)/3 B) 11π C) (32π)/3 D) (29π)/3 9 / 40 Quyida berilgan holatda stol va uni atrofida qo’yiladigan stullarning holati berilgan va raqamlangan k-holatda stullarning raqamlari yig`indisi 351 taga teng bo`lsa, k ni toping ? A) 13 B) 11 C) 12 D) 10 10 / 40 Uchburchakning 3 va 4 ga teng bo‘lgan tomonlariga o‘tkazilgan medianalar o‘zaro perpendikulyar bo‘lsa, bu uchburchakning uchinchi tomonini toping. A) 2,4 B) √6 C) 2,5 D) √5 11 / 40 Agar bo'lsa, ni m orqali ifodalang. A) (m+1)/2 B) 2/m C) (4-m)/4 D) (m+4)/4 12 / 40 Burchagi 120° ga teng bo‘lgan doiraviy sektorga ichki doira chizilgan. Berilgan doiraning radiusi R ga teng bo‘lsa, yangi doiraning radiusi topilsin. A) 3R B) 1,5R C) √3R(2-√3) D) R(√3-√2) 13 / 40 Agar α=60°, β=70°, γ=50° bo‘lsa, tgα+ tgβ+ tgγ yig‘indi quyidagilardan qaysi biriga teng? A) √3ctg40° tg70° B) 2√3tg50° tg70° C) 4 √3tg50° tg70° D) √3tg50° tg70° 14 / 40 Tenglamani yeching: A) -6 B) 5 C) -6; 5 D) 6; -5 15 / 40 bo‘lsa, A) 1 B) 3/2 C) 2 D) 2/3 16 / 40 sonlarini taqqolsang. A) b B) c C) a D) c 17 / 40 √3 A) 3/2 B) 5/5 C) 21/10 D) 7/3 18 / 40 an - arifmetik progressiyaning umumiy hadi bo‘lsa, quyidagi nisbatni toping: A) 6 B) 8 C) 7 D) 5 19 / 40 P(x)=x¹ºº ko‘phadni x³-3x+2 ga bo‘lganda qoladigan qoldiqni toping. 2¹ºº-1 (2¹ºº-1)x+2(299-1) (2¹ºº-1)x-2(299-1) 2¹ººx-3·2100 A) 3 B) 1 C) 4 D) 2 20 / 40 Hisoblang: A) 1 B) cos10° C) sin10° D) cos50° 21 / 40 To‘g‘ri to‘rtburchakning 16 ga teng diagonali yon tomoni bilan 15° li burchak tashkil etadi. To‘rtburchak yuzini toping. A) 42 B) 64 C) 32 D) 48 22 / 40 tenglamaning ildizlari yig‘indisini (agar ildizi bitta bo‘lsa, o‘zini) toping. A) 8 B) 5 C) -2 D) 3 23 / 40 Agar geometrik progressiyaning umumiy hadi bn= 3·2n bo‘lsa, ni toping. A) 2 B) 1 C) 4 D) 3 24 / 40 Kvadratlarning yuzlari yig‘indisini toping. A) berilganlar yetarli emas B) 11 C) 121 D) 22 25 / 40 Kvadratga ikkita yarim aylana ichki chizilgan. Bo‘yalgan soha yuzini toping. A) 64 B) 8(π+2) C) 16(π-2) D) 32 26 / 40 Asoslari 5 va 5√7 ga teng bo‘lgan trapetsiyaning yuzini teng ikkiga bo‘luvchi kesma asoslarga parallel. Shu kesma uzunligini toping. A) 10 B) 4√7 C) 6√7 D) 8 27 / 40 6-(5:3)·(-3)²-(-3)³+15:(-3) hisoblang. A) 13 B) 15 C) 14 D) 12 28 / 40 1+sin 2x = 7(sin x + cos x) tenglamani yeching. A) Ø B) 0 C) π/4+πk, k∈Z D) -π/4+πk, k∈Z 29 / 40 vekorning Oxy tekislikdagi proyeksiyasi bo‘lgan vektorni toping. A) 3 B) 2 C) 1 D) 4 30 / 40 Tengsizlik nechta butun juft yechimga ega? A) 115 B) 112 C) 110 D) 116 31 / 40 kasrning o‘nli kasr ko‘rinishidagi raqamlarining yig‘indisini toping. A) 11 B) 5 C) 10 D) 7 32 / 40 x²-√11x+1=0 0 bo‘lsa, A) 10 B) 9 C) 11 D) 12 33 / 40 Tenglikdan foydalanib a ni toping. (a+b+c+d)·(a-b-c+d)=(a-b+c-d)·(a+b-c-d) A) bc/d B) 1 C) bd/c D) cd/b 34 / 40 ABC uchburchakning A burchgi 30° ga, B burchagi 75° ga teng. B uchidan AC tomonga BD kesma o‘tkazilgan. ABD burchak 45° ga teng bo‘lsa, quyidagilardan qaysi biri noto‘g‘ri? A) AB = BC B) BD = BC C) BC > AD D) DC < AD 35 / 40 Hisoblang: A) 19/20 B) 10/11 C) 20/21 D) 9/10 36 / 40 3x3 o‘lchamli kvadratning tugunlarida 16 ta nuqta belgilanib, ularning o‘ng tomondan eng yuqorisidagi A bilan belgilangan. Bir uchi A nuqtada, qolgan uchlari qolgan 15 ta nuqtada orasidan tanlanadigan uchburchaklarning sonini toping. A) 96 B) 25 C) 100 D) 105 37 / 40 ABC to‘g‘ri burchakli uchburchakning og‘irlik markazi G nuqta. Bunda AB ⊥ BC, AG ⊥ GB va AG = 8 bo‘lsa, BG ni toping. A) 3√2 B) 4√2 C) 6 D) 4√3 38 / 40 Tenglamalar sistemasining ildizlari yig‘indisini toping. A) 10 B) 12 C) 20 D) 14 39 / 40 ABC o‘tkir burchakli uchburchakning BC asosiga AD balandlik, AC yon tomoniga BE balandlik o‘tkazilgan. Bunda CE =2AE = 8, DC = 6 bo‘lsa, BD ni toping. A) 10 B) 8 C) 6 D) 12 40 / 40 Barcha ikki xonali sonlar ko‘paytmasi 4 ning qanday eng katta darajasiga bo‘linadi? A) 43 B) 42 C) 44 D) 45 O'rtacha ball 0% 0% Testni qayta ishga tushiring Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz
Istaklar ro'yxatiga qo'shildiIstaklar ro'yxatidan olib tashlandi 13 Matematika fanidan attestatsiya savollari №16