Uy » Attestatsiya testlar » Matematika attestatsiya » Matematika attestatsiya №5 Matematika attestatsiya Matematika attestatsiya №5 InfoMaster Yanvar 24, 2022 33 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0% 2 ovozlar, 1 avg 0 12345678910111213141516171819202122232425262728293031323334353637383940 Matematika fanidan attestatsiya savollari №5 1 / 40 Abdulla, Samandar va Jamshid 3 ta stulga necha xil usulda utirishi mumkin? A) 27 B) 9 C) 6 D) 7 2 / 40 tengsizlik yechimi bo’la oladigan tub sonlar nechta? A) 4 B) 3 C) 2 D) 5 3 / 40 Agar a-b+c=10 va bo‘lsa, ac-ab-bc ifodaning qiymatini toping. A) aniqlab bo‘lmaydi B) 18 C) 16 D) 20 4 / 40 Arifmetik progressiyada an+1=an+2 va a4=4 bo'lsa, uning dastlabki 12 ta hadini yig'indisini toping. A) 96 B) 114 C) 126 D) 108 5 / 40 funksiyaning qiymatlar to'plamini toping. A) [-√2;0)∪(0;√2] B) [-√2;√2] C) [-√2;-1)∪(-1;1)∪(1;√2] D) (-2√2;√2) 6 / 40 20132015 ni 10 ga bo'lgandagi qoldiqni toping. A) 1 B) 7 C) 9 D) 3 7 / 40 Standart shaklda yozing 0,000000000000013 1,3·10-12 1,3·10-13 1,3·10-14 1,3·10-15 A) 4 B) 1 C) 2 D) 3 8 / 40 Hisoblang: -121+(-135)-(-1)28 A) -2 B) -1 C) 0 D) -3 9 / 40 AM||KL , ∠BCD=70°,∠CDE=40°, ∠DEF =45°,∠EFG=80°, ∠FGK=70°∠MBC=x ga teng bo`lsa x ni toping ? A) 40° B) 30° C) 20° D) 10° 10 / 40 a,b,c -1 dan katta musbat sonlar uchun a³=b² va a4=c5 bo'lsa, logbc ni toping. A) 1/2 B) 1/3 C) 8/15 D) 5/6 11 / 40 Dastlabki n ta hadining yig‘indisi formula bilan aniqlanadigan arifmetik progressiyaning 6-hadini toping. A) 9 B) 8 C) 6 D) 10 12 / 40 A, B,C,D, E natural sonlar. Agar EKUB(A,B,C)=10, EKUB(B,C,D,E)=15 bo‘lsa, A+ B+C+D+ E ning eng kichik qiymatini toping. A) 120 B) 80 C) 100 D) 90 13 / 40 Ifodaning qiymatini toping. A) 0,04 B) 0,0(2) C) 0,0(4) D) 0,(04) 14 / 40 Hisoblang: A) -√3/2 B) 0 C) -1/2 D) 1/32 15 / 40 P(x)=x¹ºº ko‘phadni x³-3x+2 ga bo‘lganda qoladigan qoldiqni toping. 2¹ºº-1 (2¹ºº-1)x+2(299-1) (2¹ºº-1)x-2(299-1) 2¹ººx-3·2100 A) 1 B) 4 C) 2 D) 3 16 / 40 Tengsizlik nechta butun juft yechimga ega? A) 110 B) 112 C) 116 D) 115 17 / 40 sonlari geometrik progressiyaning ketma-ket hadlari bo‘ladigan barcha n larning yig‘indisini (agar bitta qiymati bo‘lsa, o‘zini) toping. A) 14 B) 35 C) 24 D) 23 18 / 40 vekorning Oxy tekislikdagi proyeksiyasi bo‘lgan vektorni toping. A) 2 B) 3 C) 1 D) 4 19 / 40 ABC to‘g‘ri burchakli uchburchakning og‘irlik markazi G nuqta. Bunda AB ⊥ BC, AG ⊥ GB va AG = 8 bo‘lsa, BG ni toping. A) 6 B) 4√3 C) 4√2 D) 3√2 20 / 40 x²-√11x+1=0 0 bo‘lsa, A) 12 B) 9 C) 10 D) 11 21 / 40 To‘g‘ri to‘rtburchakning 16 ga teng diagonali yon tomoni bilan 15° li burchak tashkil etadi. To‘rtburchak yuzini toping. A) 32 B) 64 C) 42 D) 48 22 / 40 an - arifmetik progressiyaning umumiy hadi bo‘lsa, quyidagi nisbatni toping: A) 6 B) 8 C) 7 D) 5 23 / 40 P(x+1)=x³+3x²-2x+a+3 ko‘phadi berilgan. P(x+2) ko‘phadining koeffitsiyentlari yig‘indisini 8 ga teng bo‘lsa, a nechaga teng? A) 5 B) -4 C) -3 D) -6 24 / 40 Barcha ikki xonali sonlar ko‘paytmasi 4 ning qanday eng katta darajasiga bo‘linadi? A) 42 B) 43 C) 44 D) 45 25 / 40 a+b+c=10, bo‘lsa, ni toping. A) 6 B) 5 C) 11 D) 4 26 / 40 Agar α=60°, β=70°, γ=50° bo‘lsa, tgα+ tgβ+ tgγ yig‘indi quyidagilardan qaysi biriga teng? A) 2√3tg50° tg70° B) √3tg50° tg70° C) √3ctg40° tg70° D) 4 √3tg50° tg70° 27 / 40 Tenglamalar sistemasining ildizlari yig‘indisini toping. A) 12 B) 14 C) 10 D) 20 28 / 40 √3 A) 5/5 B) 7/3 C) 21/10 D) 3/2 29 / 40 Rasmdagi shakl perimetrini toping. A) 32 B) 28 C) 30 D) 24 30 / 40 Hisoblang: A) 20/21 B) 9/10 C) 19/20 D) 10/11 31 / 40 Chizmadan foydalanib α ni toping. A) 30° B) 40° C) 20° D) 50° 32 / 40 6-(5:3)·(-3)²-(-3)³+15:(-3) hisoblang. A) 14 B) 15 C) 12 D) 13 33 / 40 Tenglamani yeching: A) -6; 5 B) 5 C) 6; -5 D) -6 34 / 40 Kvadratlarning yuzlari yig‘indisini toping. A) 121 B) 11 C) berilganlar yetarli emas D) 22 35 / 40 ABC uchburchakning A burchgi 30° ga, B burchagi 75° ga teng. B uchidan AC tomonga BD kesma o‘tkazilgan. ABD burchak 45° ga teng bo‘lsa, quyidagilardan qaysi biri noto‘g‘ri? A) AB = BC B) BC > AD C) DC < AD D) BD = BC 36 / 40 Kvadratga ikkita yarim aylana ichki chizilgan. Bo‘yalgan soha yuzini toping. A) 64 B) 32 C) 8(π+2) D) 16(π-2) 37 / 40 ABC o‘tkir burchakli uchburchakning BC asosiga AD balandlik, AC yon tomoniga BE balandlik o‘tkazilgan. Bunda CE =2AE = 8, DC = 6 bo‘lsa, BD ni toping. A) 6 B) 12 C) 8 D) 10 38 / 40 3x3 o‘lchamli kvadratning tugunlarida 16 ta nuqta belgilanib, ularning o‘ng tomondan eng yuqorisidagi A bilan belgilangan. Bir uchi A nuqtada, qolgan uchlari qolgan 15 ta nuqtada orasidan tanlanadigan uchburchaklarning sonini toping. A) 96 B) 100 C) 105 D) 25 39 / 40 Sonlarining o‘rta geometrik qiymatini toping. A) 4√3 B) 2√3 C) 2√2 D) 3√2 40 / 40 b ning qanday qiymatlarida M(2;1) nuqtadan 4x - 3y + b = 0 to‘g‘ri chiziqqacha masofa 2 ga teng bo‘ladi? A) 6 B) 3 yoki –8 C) 4 yoki –12 D) 5 yoki –15 O'rtacha ball 0% 0% Testni qayta ishga tushiring Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz
Istaklar ro'yxatiga qo'shildiIstaklar ro'yxatidan olib tashlandi 13 Matematika fanidan attestatsiya savollari №16