Uy » Attestatsiya testlar » Matematika attestatsiya » Matematika attestatsiya №2 Matematika attestatsiya Matematika attestatsiya №2 InfoMaster Yanvar 13, 2022 43 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0% 2 ovozlar, 4.5 avg 0 12345678910111213141516171819202122232425262728293031323334353637383940 Matematika fanidan attestatsiya savollari №2 1 / 40 To’g’ri turt burchakning bo’yining perimetriga nisbatini toping. A) 1/2 B) -452/18 C) 3/18 D) 5/3 2 / 40 |x+1|=2|x–2| tenglamaning ildizlari yig’indisini toping. A) 0 B) 5 C) 7 D) 6 3 / 40 x,y,z∈N A=6x+1=5y+1=4z+1, min(A)=? A) 60 B) 59 C) 58 D) 61 4 / 40 Jamshid bir kunda 70,5 kgdan paxta tersa, 8460 kg paxtani necha kunda terib bo’ladi ? A) 140 kun B) 120 kun C) 130 kun D) 100 kun 5 / 40 y=4cos 2x+cos8x funksiyaning hosilasini toping A) -16cos3x*sin5x B) 16cos3x*cos5x C) 16sin3x*cos5x D) 16sin3x*sin5x 6 / 40 Agar bo'lsa ifodaning qiymatini toping. A) 9 B) 13 C) 0 D) 7 7 / 40 Kichchik diagonali tomoniga teng bo’lgan rombga , tomoni diametr qilib yarim doira va uning ichiga romb tomoniga hamda yarim doiraga urunuvchi aylana chizilgan . Agar romb tomoni 8 bo’lsa aylana markazidan diagonallar kesishish nuqtasigacha bo’lgan masofani toping. A) 2 B) 4 C) 3 D) 1 8 / 40 Quyidagi javoblardan qaysi biri tengsizlikni yechimi bo'la oladi? A) 4 B) 2 C) 3 D) 1 9 / 40 Yig’indi quydagilardan qaysi biriga teng? A) 450,608 B) 45,0608 C) 4506,08 D) 40560,8 10 / 40 ABCD qavariq to‘rtburchakka aylana ichki chizilgan. AB = 8, BC = 12 bo‘lsa, CD – AD ayirmani toping. A) 3 B) 2 C) 4 D) aniqlab bo‘lmaydi 11 / 40 Arifmetik progressiyada an+1=an+2 va a4=4 bo'lsa, uning dastlabki 12 ta hadini yig'indisini toping. A) 108 B) 126 C) 114 D) 96 12 / 40 tenglamaning ildizlari yig'indisini(agar ildizi bitta bo'lsa, o'zini) toping. A) 0 B) 1 C) 3 D) 2 13 / 40 Teng yonli trapetsiyaning diagonallari o'zaro perpendikulyar hamda yuzi 32 ga teng bo'lsa, uning diagonali uzunligini toping. A) 4 B) 8 C) 2 D) 6 14 / 40 P(-2;2) nuqtadan o'tuvchi va a(6;4)a vektorga perpendikulyar bo'lgan to'g'ri chiziq tenglamasini toping. A) 3x+2y-2=0 B) 3x-2y-2=0 C) 3x-2y+2=0 D) 3x+2y+2=0 15 / 40 f(x)=3x-2 funksiyaning qiymatlar sohasini toping. A) [-1; ∞) B) (-2; ∞) C) (0; ∞) D) (-1; ∞) 16 / 40 funksiyaning qiymatlar to'plamini toping. A) (-2√2;√2) B) [-√2;-1)∪(-1;1)∪(1;√2] C) [-√2;√2] D) [-√2;0)∪(0;√2] 17 / 40 Usta ishning 0,75 qismini 17/4 soatda bajaradi. Shu ishning 4/5 qismini qancha vaqtda bajaradi? A) 68/15 B) 31/85 C) 67/15 D) 11/5 18 / 40 y=f(x) funksiya uchun tenglik o'rinli bo'lsa, f(π/4)=? A) 1/5 B) 1/4 C) 1/3 D) 4 19 / 40 f(x-1)+f(x+2)=2(x²+7) ekani ma‟lum bo'lsa, f(x) ko'phadni toping. A) f(x)=x²+3x+7 B) f(x)=x²-4 C) f(x)+2x²-1 D) f(x)=x²-x+5 20 / 40 20132015 ni 10 ga bo'lgandagi qoldiqni toping. A) 9 B) 1 C) 3 D) 7 21 / 40 Bir odam shunday vasiyat qildi: “Naqd 10 dirham pulim bor. Bir kishiga qarz ham berganman. Qarzning miqdori o'g'lim oladigan merosga teng. Ikkala o'g'lim barobar meros olishsin. Ukamga jami merosning 0,2 qismini va yana 1 dirham beringlar”. U kishining o'g'illari necha dirhamdan meros olishgan? A) 8 B) 6 C) 35/6 D) 25/3 22 / 40 a va b raqamlar yig'indisi 7 ga qoldiqsiz bo'linadi. Agar ko'rinishdagi uch xonali sonlarning 7 ga bo'lganda bir xil qoldiq qolsa, shu qoldiqni toping. A) 2 B) 6 C) 4 D) 0 23 / 40 f(x)=26sin6x·sin7x funksiya uchun boshlang'ich funksiyasini toping. A) -13cosx- cos13 x +C B) 13sinx-sin13x + C C) 13sinx+sin13x + C D) 13cosx-cos13x + C 24 / 40 cosx=0,2x tenglama nechta yechimga ega? A) 3 B) 1 C) 2 D) 4 25 / 40 a va b musbat sonlari uchun alnb·blna+alnb +blna bo'lsa, (lna)·(lnb)=? A) ln3 B) ln5 C) ln4 D) ln2 26 / 40 Agar a>0 bo'lsa, funksiyaning vertikal asimptotasini toping. A) x=-a B) x=a C) y=-a D) y=1-a 27 / 40 Tenglama ildizlari ayirmasining modulini toping. A) √5+5 B) √5 C) 5 D) 2√5 28 / 40 Aniq integralni hisoblang: A) 3 B) 0 C) 2 D) 0,5 29 / 40 Qadam uzunligi deb biricnhi iz tovon oxiridan ikkinchi iz tovon oxirigacha bo'lgan masofaga aytiladi. Erkak kishi yurayotganda uning qadami va qadamlar soni orasidagi bog'lanish quyidagi formula bilan ifodalanadi: (n/P) = 140. Bu yerda n – bir minutdagi qadamlar soni. P – qadam uzunligi (m). Hikmat 1 minutda 70 qadam bossa, formula yordamida uning qadami uzunligini toping. A) 0,9 m yoki 90 cm B) 0,5 m yoki 50 cm C) 0,7 m yoki 70 cm D) 0,6 m yoki 60 cm 30 / 40 P(x), Q(x) va R(x) ko'phatdalar berilgan. Bunda P(x) ko'phadning odoz hadi Q(x) ko'phadning ozod hadidan ikki marta katta va P(0)≠0. P(x)=Q(x)·R(x+1) bo'lsa, R(x) ko'phadning koeffitsiyentlarining yig'indisini toping. A) 4 B) 2 C) 3 D) 1 31 / 40 tenglamani yeching. A) 3 B) log(5/3)2 C) 5 D) log(3/5)2 32 / 40 Tengsizlikni yeching. A) (-∞;-2] B) [-3;2]∪{1} C) [-3;-2] D) [-2;1]∪{-3} 33 / 40 1·2·3· ... ·30 ko'paytmani tub ko'paytuvchilarga ajratganda ko'apytmada 2n, 3m va 7k lar ishtirok etsa, n+m+k ni toping. A) 40 B) 46 C) 50 D) 44 34 / 40 x4+8x3+ax2+bx+1 ko'phadning kvadrati bo'lsa, a va b koeffitiyentlarning barcha qiymatlari yig'indisini toping. A) 27 B) 48 C) 26 D) 32 35 / 40 Ushbu sistemaga ko'ra (ac+bd)² ni toping. A) 4 B) 3 C) 2 D) 1 36 / 40 funksiyaning [2; 3] kesmadagi eng katta qiymatini A) 4,5 B) 7,5 C) 4 D) 3 37 / 40 Uchlari A(4;5;1), B(2;3;0) va C(2;–1;–3) nuqtalarda joylashgan uchburchakning BD medianasi uzunligini toping. A) √2 B) 2 C) 1 D) √3 38 / 40 Umumiy hadi xn=3+5n-n2 formula bo'yicha berilgan sonli ketma-ketlikning eng katta hadi 15 dan qanchaga kam? A) 5,75 B) 6 C) 13 D) 9,25 39 / 40 Muntazam uchburchak ichidan olingan nuqtadan uchburchak tomonlarigacha bo'lgan masofalar mos holda c(2;3;1), b(1;2;1) va a(1;2;3) vektorlarning absolut qiymatlariga teng bo'lsa, uchburchakning balandligini toping. A) 2√14+√6 B) √6+√14 C) 18 D) 16 40 / 40 Hisoblang: A) 27 B) 4 C) 7 D) 9 O'rtacha ball 0% 0% Testni qayta ishga tushiring Fikr-mulohaza yuboring Tomonidan Wordpress Quiz plugin Author: InfoMaster Foydali bo'lsa mamnunmiz
Istaklar ro'yxatiga qo'shildiIstaklar ro'yxatidan olib tashlandi 7 Matematika fanidan attestatsiya savollari №16