Uy » Choraklik online testlar » Matematika choraklik » 11-sinf Matematika 4-chorak Matematika choraklik 11-sinf Matematika 4-chorak InfoMaster Aprel 20, 2021 270 Ko'rishlar 83 izohlar SaqlashSaqlanganOlib tashlandi 4 0 OMAD YOR BO'LSIN! 11-sinf Matematika 4-chorak Testni Salomov Sardor tayyorladi. 1 / 25 Silindr shaklidagi idishga 6 sm3 suv solindi. Idishga detal to’liq cho’ktirilganda, suv sathi 1,5 marta ko’tarildi. Detal hajmini aniqlang A) 3 B) 14 C) 1 D) 23 2 / 25 Trapetsiyaning kichik asosi 6 ga va yon tomoni 5 va 7 ga teng. Uning kata asosi ham butun son bo’lsa, perimetri eng ko’pi bilan nechaga teng bo’lishi mumkin A) 1 B) 3 C) 4 D) 3√2 3 / 25 cos150*cos450 *cos750 ni hisoblang A) √2 B) 2√2 C) √2/2 D) √8/2 4 / 25 Aylanaga o’tkazilgan vatar uni 5:7 nisbatda bo’ladi. Ushbu vatarga tiralgan, aylanaga ichki chizilgan katta burchakni toping A) 55° B) 125° C) 105° D) 75° 5 / 25 tengsizlikning yechimi bo’lgan eng kichik natural sonni toping A) 5 B) 4 C) 1 D) 3 6 / 25 Moddiy nuqta S(t)=5t3+3t2+2t+4 qonuniyat bilan harakatlanayotgan jismning t=2 sekunddagi tezligini toping. A) 74 B) 84 C) 60 D) 70 7 / 25 Funksiya hosilasini toping f(x)=(2x+4)(3x+1) A) 12x B) 3x+1 C) 16x+14 D) 12x+14 8 / 25 Limitni hisoblang: A) -4 B) -3 C) 4 D) 3 9 / 25 A) 13 B) 18 C) 20 D) 14 10 / 25 Funksiyaning statsionar nuqtalarini toping A) x=-1, x=3 B) x=0, x=2 C) x=-1, x=2 D) x=3, x=2 11 / 25 Murakkab funksiyaning hosilasini toping. y=x2sinx A) y’=-2xsinx+x² B) y’=x²cosx-2xsinx C) y’=2xsinx+x²cosx D) y’=2xsinx-x² 12 / 25 Uchlari A(4;0;1), B(5;-2;1), C(4;8;5) nuqtalarda bo’lgan uchburchakning AL bissektrisasi uzunligini toping A) (4√2)3 B) (4√2)/5 C) 4 D) (2√5)/3 13 / 25 Moddiy nuqtaning berilgan t vaqtdagi tezligini hisoblang: , t=5 A) 75 B) 70 C) 80 D) 90 14 / 25 f(x)=3x2-5x+4 va g(x)=4x-5 funksiyalarining urinmalari parallel bo’ladigan nuqtalarini toping. A) 2 B) 1.5 C) 0 D) 0.5 15 / 25 limitni hisoblang A) 0 B) 7 C) 5 D) 6 16 / 25 Nargiza 4minutda 260ta so`zni terib, 7ta imloviy xatoga yo`l qo`ydi. Nargizaning matn terish sifatini aniqlang A) 0,6 B) 0,0269 C) 0,5 D) 0,01 17 / 25 Agar f(x)=x² va bo`lsa ,f(g(-4)) ni toping A) -12 B) 12 C) 0 D) 36 18 / 25 funksiyasining kamayish oralig’ini toping A) (0;+∞) B) ∅ C) (-∞;0] D) (-√5;√5) 19 / 25 Tekislikdagi 1 m masofada yotgan nuqtadan ikkita teng og’ma o’tkazilgan. Agar og’malar perpendikulyar va tekislikka o’tkazilgan perpendikulyar bilan 600 ga teng burchaklar tashkil etsa, og’malarning asoslari orasidagi masofani toping A) 1 B) 2√2 C) 4√2 D) 2√3 20 / 25 integralni hisoblang A) 5ln2e B) 5ln3e³ C) 5 D) 5ln4e 21 / 25 f(x)=(sinx)cosx bo’lsa, f '(5π/6) ni toping A) (ln2+3)/2)*(√3^√3) B) (ln2+3)/2)*(√2^√2) C) (ln2-3)/2)*(√2^√3) D) (ln2+3)/2)*(√2^√3) 22 / 25 Tomoni 4 ga teng bo’lgan teng tomonli uchburchak ichiga uchburchakning tomonlariga urinuvchi uchta teng doira joylashtirilgan. O’zaro urunuvchi doiralar yoylaridan hosil bo’lgan egri chiziqli uchburchakning yuzini toping A) 2√3-π B) (4-√3)(2√3-π) C) (2-√3)(2√3-π) D) (2-√3)(2-π) 23 / 25 f(x)=(3x+2)2 funksiyasining barcha boshlang’ich funksiyalarini toping. A) F(x)=6x³+3x²+4 B) F(x)=6x³+6x+4 C) F(x)=6x³+3x²-4 D) F(x)=6x³+6x²+4 24 / 25 sonini taqriban hisoblang. A) 3,08 B) 5,01 C) 5,08 D) 4,08 25 / 25 F(x)=0.2sin(5x+12) funksiyasi uchun f(x) ni toping A) f(x)=0.5cos(5x+12) B) f(x)=-cos(5x+12) C) f(x)=cos(5x+12) D) f(x)=-0,5sin(5x+12) 0% Testni qayta ishga tushiring Baholash mezoni 86%-100% 5 baho 71%-85% 4 baho 56%-70% 3 baho 55% va kamiga 2 baho Fikr-mulohaza yuboring Tomonidan Wordpress Quiz plugin Author: InfoMaster Foydali bo'lsa mamnunmiz