Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 32 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 1 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 7 sonini uchta natural sonlar yig’indisi ko’rinishida necha xil usulda yozish mumkin? A) 4 B) 3 C) 5 D) 6 2 / 30 Sin9x =4sin3x tenglamani yeching A) π/2+πn, n€Ζ B) π/3+πn, n€Ζ C) πn/3, n€Ζ D) πn, n€Ζ 3 / 30 Tengsizlikni yeching. A) to'g'ri javob yo'q B) (0;+∞) C) 0 D) (-1/³ √2 ;0) 4 / 30 Ifodani soddalashtiring. 2 cos55o.cos40o.sin55o+cos110o.sin40o A) 1 B) 0,5 C) 0 D) 2 5 / 30 ifodaning qiymatini toping. A) -0,5 B) 0 C) -2 D) 0,5 6 / 30 Ostki asosining yuzi 32π va ustki asosining yuzi 18π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning sirtini toping. A) 56π B) 96π C) 100π D) 72π 7 / 30 To‘g‘ri to‘rtburchakning eni 25% ga orttirildi, bo‘yi esa 25% ga kamaytirildi. Natijada uning yuzi qanday o‘zgardi? A) 6,25% ga ortadi B) o‘zgarmaydi C) 2,5% ga ortadi D) 6,25% ga kamayadi 8 / 30 Hisoblang A) 1 B) 2 C) -1 D) 0 9 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 32 B) 42 C) 36 D) 38 10 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakning perimetri 48 va aylana radiusi 7 ga teng bo‘lsa, u holda kesma uzunligini toping A) 12 B) 30 C) 15 D) 25 11 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 2100 B) 1900 C) 2200 D) 2000 12 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) √3/2 B) 1,5 C) √5/2 D) 1 13 / 30 Agar bank qo`yilgan pulga 40% yillik foyda bersa, qo`yilgan 5000 so`m pul bir yildan keyin qancha bo`ladi ? A) 7200 B) 7000 C) 6200 D) 6900 14 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) -4sin2x*cos(cos2x) B) 4sin2x*cos(cos2x) C) 4sin2x*cos(2cos2x) D) -4sin2x*cos(2cos2x) 15 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 13 ga, katetlaridan biri 52 ga teng. Gipotenuzaga tushirilgan balandlik uzunligini toping A) 7 B) 6 C) 4 D) 5 16 / 30 Anvar tub son o’yladi va o’ylagan sonini 5 ga ko’paytirib, 8 ni ayirgan edi, yana tub son hosil bo’ldi. Anvar qanday son o’ylagan? A) 2 B) 374389 C) aniqlab bo’lmaydi D) 412967 17 / 30 A) 2 B) 3 C) 1 D) 5 18 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 11 B) 12 C) 9 D) 10 19 / 30 Tengsizlikni yeching. A) (-3;2) B) (-4;2)v(2;3) C) (2;4) D) (-3;2)v(2;4) 20 / 30 Muntazam uchburchakli piramidaning yon qirrasi asos tekisligi bilan 45o li burchak tashkil etgan bo‘lsa, u holda piramidaning yon sirti yuzining uning asosi yuziga nisbatini toping. A) 3√3 B) 2√3 C) 4 D) 2√5 21 / 30 x(t)=t2+7t-6 qonuniyat bo’yicha harakatlanayotgan moddiy nuqtaning tezligi harakat boshlangandan necha sekund o’tgach 87 m/s ga teng bo’ladi? A) 40 B) 36 C) 50 D) 54 22 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) ln(lg x) B) lg(lg x) C) ln(ln x) D) lg(ln x) 23 / 30 sistemada xy ning qiymatini toping. A) 75 B) 60 C) 64 D) 80 24 / 30 bo’lsa ni toping. Bunda funksiya f(x) ga teskari funksiya. A) -14 B) -4 C) -10 D) -12 25 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 50 B) 10 C) 2 yoki 50 D) 10 yoki 50 26 / 30 Quyidagilardan qaysi biri barcha lar uchun ma’noga ega (aniqlangan)? A) 4k+1/1/8:7-1/56 B) (512-1/2⁻⁹)° C) ²ᴷ⁺⁴v2k+1/k²+1 D) ⁴ᴷ⁺³√-√2k+1 27 / 30 Tenglamaning ildizlari yig’indisi va ko’paytmasining yig’indisini toping. |x+1|.|x-4|=5 A) 9 B) 6 C) -6 D) -3 28 / 30 |x2-5x-14|+20≥5|x+2|+4|x-7| tengsizlikni yeching. A) (-∞;-6]v{2}v[12;∞) B) [2;4]v{2}v[3;∞) C) [-2;4]v{6} D) [1;6] 29 / 30 sistema a ning qanday qiymatida cheksiz ko’p yechimga ega? A) (-∞;6])v[6;∞) B) (2;∞) C) 6 D) (-∞;6) 30 / 30 a=sin 1; b=sin 2; c=sin 3; d=sin 4 va e=sin 5 sonlarni kamayish tartibida joylashtiring. A) b>c>a>d>e B) a>b>c>d>e C) e>b>a>d>c D) b>a>c>d>e 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Tomonidan Wordpress Quiz plugin Author: InfoMaster Foydali bo'lsa mamnunmiz