Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 166 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Anvar tub son o’yladi va o’ylagan sonini 5 ga ko’paytirib, 8 ni ayirgan edi, yana tub son hosil bo’ldi. Anvar qanday son o’ylagan? A) 412967 B) 374389 C) aniqlab bo’lmaydi D) 2 2 / 30 Tengsizlikni yeching. A) (-3;2) B) (-3;2)v(2;4) C) (2;4) D) (-4;2)v(2;3) 3 / 30 x2-5|x|-6=0 tenglama ildizini toping A) ±6 B) -1;6 C) ±;±6 D) -1;-6 4 / 30 Tomoni 25 ga diagonallaridan biri 4 ga teng bo’lgan rombning yuzini toping. A) 32 B) 16 C) 24√5 D) 8√5 5 / 30 sistemada xy ning qiymatini toping. A) 75 B) 60 C) 64 D) 80 6 / 30 A) 2 B) 1 C) 0 D) √6 7 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) 2√2 B) √2 C) 2 D) 4 8 / 30 y=cos(2sinx) funksiyaning qiymatlar sohasini toping. A) [-1;1] B) [0;cos2] C) [0;1] D) [cos2;1] 9 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) o’tmas burchakli uchburchak B) o’tkir burchakli uchburchak C) to’gri burchakli uchburchak D) teng tomonli uchburchak 10 / 30 Agar va b-a=4 bo’lsa, a+b ni toping. A) 3 B) 2 C) 4 D) 3,5 11 / 30 Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY uchburchak qanday uchburchak bo‘ladi? A) ixtiyoriy uchburchak B) teng yonli uchburchak C) to`g`ri burchakli uchburchak D) muntazam uchburchak 12 / 30 7 sonini uchta natural sonlar yig’indisi ko’rinishida necha xil usulda yozish mumkin? A) 5 B) 4 C) 6 D) 3 13 / 30 x(t)=t2+7t-6 qonuniyat bo’yicha harakatlanayotgan moddiy nuqtaning tezligi harakat boshlangandan necha sekund o’tgach 87 m/s ga teng bo’ladi? A) 50 B) 54 C) 36 D) 40 14 / 30 Hisoblang. A) 17/34 B) 2/17 C) 2/34 D) 15/34 15 / 30 tenglamalar sistemasini yeching A) (-4;-4) B) (-4;4) C) (4;4) D) (4;–4) 16 / 30 Radiusi 25 bo’lgan doirada 48 ga teng vatar o’tkazilgan. Doira markazidan shu vatargacha masofani toping. A) 8 B) 9 C) 10 D) 7 17 / 30 Teng yonli uchburchakning tomonlari 5, 5 va 6 ga teng. Bu uchburchakning bissektiritsalari va medianalari kesishgan nuqtalar A) 1/2 B) 1/6 C) 1,2 D) 1 18 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 36 B) 38 C) 32 D) 42 19 / 30 Tengsizlikni yeching. A) (0;+∞) B) (-1/³ √2 ;0) C) to'g'ri javob yo'q D) 0 20 / 30 Agar sinx+cosx=a bo’lsa, ning qiymatini toping. A) -1/2 B) 1/2 C) 1/3 D) 2/5 21 / 30 Hisoblang A) 1 B) 2 C) -1 D) 0 22 / 30 Soddalashtiring. (0<m<7) A) 2m-7 B) m C) 7 D) 7-2m 23 / 30 AA1A2A3A4A5A6 muntazam oltiburchakli piramidaning hajmi ga va balandligi 2 ga teng bo‘lsa, u holda AA2A6 kesim yuzini toping. A) √15 B) 3 C) √5 D) 2 24 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakning perimetri 48 va aylana radiusi 7 ga teng bo‘lsa, u holda kesma uzunligini toping A) 15 B) 30 C) 12 D) 25 25 / 30 y= funktsiyaning aniqlanish sohasini toping. A) (-∞;2)v(2;∞) B) (2;∞) C) (-∞;2) D) [2;∞) 26 / 30 Qaysi javobda faqat juft funksiyalar ko’rsatilgan? A) 1, 3 B) 3, 4 C) 1,4 D) 2, 3 27 / 30 Ifodani soddalashtiring. 2 cos55o.cos40o.sin55o+cos110o.sin40o A) 0,5 B) 0 C) 1 D) 2 28 / 30 m ning qanday eng katta butun qiymatida y=2x-mx-5+m funksiyaning grafigi 1,3,4 –choraklarda yotadi? A) 1 B) 5 C) 3 D) 2 29 / 30 Tenglamaning nechta ildizi bor? |x+1|=|2x-1| A) 3 B) 4 C) 2 D) 1 30 / 30 sonning oxirgi raqamini toping. A) 4 B) 6 C) 2 D) 8 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz