Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 158 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 1 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 222220175 B) 222222222222 C) 2222222175 D) 22222222220 2 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 13 ga, katetlaridan biri 52 ga teng. Gipotenuzaga tushirilgan balandlik uzunligini toping A) 6 B) 5 C) 7 D) 4 3 / 30 m ning qanday eng katta butun qiymatida y=2x-mx-5+m funksiyaning grafigi 1,3,4 –choraklarda yotadi? A) 5 B) 1 C) 2 D) 3 4 / 30 Agar f(x)=4x3-6x2-2x+3x .log3e bo’lsa, u holda ni toping. A) e B) √2e C) 1 D) 3e 5 / 30 Soat 3:37 bo’lganda minut va soat millari orasidagi burchakni toping. A) 113,5° B) 113° C) 112,5° D) 100° 6 / 30 ABC muntazam uchburchak ichidan ixtiyoriy P nuqta olinib, undan BC, CA va AB tomonlarga mos ravishda PD, PE va PF perpendikulyarlar tushirilgan bo’lsa,ni toping. A) 1 B) 1/√2 C) 1/√3 D) 0,5 7 / 30 Agar va b-a=4 bo’lsa, a+b ni toping. A) 3,5 B) 4 C) 2 D) 3 8 / 30 Tengsizlik nechta butun yechimga ega? A) 3 B) 1 C) 4 D) cheksiz ko’p 9 / 30 Agar bank qo`yilgan pulga 40% yillik foyda bersa, qo`yilgan 5000 so`m pul bir yildan keyin qancha bo`ladi ? A) 7200 B) 6900 C) 7000 D) 6200 10 / 30 Ostki asosining yuzi 32π va ustki asosining yuzi 18π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning sirtini toping. A) 72π B) 96π C) 100π D) 56π 11 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 54 B) 108 C) 48 D) 52 12 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 10 B) 2 yoki 50 C) 50 D) 10 yoki 50 13 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (4; -3) B) (7; 1) C) (-7; 1) D) (-7;-1) 14 / 30 x2-5|x|-6=0 tenglama ildizini toping A) ±6 B) -1;-6 C) -1;6 D) ±;±6 15 / 30 y= funksiyaning aniqlanish sohasini toping A) (0,2) B) (-∞;0)v(2;∞) C) (2;∞) D) (-∞;0])v[2;∞) 16 / 30 y=cos(2sinx) funksiyaning qiymatlar sohasini toping. A) [cos2;1] B) [-1;1] C) [0;cos2] D) [0;1] 17 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) lg(ln x) B) ln(ln x) C) ln(lg x) D) lg(lg x) 18 / 30 Agar funksiya berilgan bo’lsa, u holda M=ning qiymatini toping. A) e⁵⁰⁵⁰ B) e⁻⁴⁹⁵⁰ C) e⁴⁹⁵⁰ D) e⁻⁵⁰⁵⁰ 19 / 30 Agar arctga+ arctgb + arctgc= bo’lsa, a+b+c ni toping. A) ab/c B) 1 C) abc D) ab 20 / 30 Agar f(x)=ax3-5x2+b va bo’lsa, a ni toping. A) 3 B) 2 C) 0 D) 1 21 / 30 Ushbu arifmetik progressiyaning manfiy hadlari yig’indisini toping. A) -0,75 B) -1 C) -0,5 D) -0,25 22 / 30 Tenglamani yeching. (x+2)+(x+4)+(x+6)+…+(x+100)=2800 A) 7 B) 4 C) 3 D) 5 23 / 30 Tenglamani yeching. |x2-11x+10|=x2-11x+10 A) (-∞;1] B) [10;∞) C) (-∞;1]v[10;∞) D) 1; 10 24 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 2100 B) 1900 C) 2000 D) 2200 25 / 30 ifodaning qiymatini toping. A) 0 B) 0,5 C) -0,5 D) -2 26 / 30 Ag ar tgα=2 bo’lsa, u holda ni hisoblang A) 10/27 B) -10/27 C) -10/3 D) 10/3 27 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 60 B) 47 C) 120 D) 18 28 / 30 Qaysi javobda faqat juft funksiyalar ko’rsatilgan? A) 1,4 B) 3, 4 C) 1, 3 D) 2, 3 29 / 30 Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY uchburchak qanday uchburchak bo‘ladi? A) ixtiyoriy uchburchak B) teng yonli uchburchak C) to`g`ri burchakli uchburchak D) muntazam uchburchak 30 / 30 Tomoni 12 ga teng bo`lgan teng tomonli uchburchakga ichki chizilgan aylana uzunligini toping. A) 2√3π B) 4√3π C) 3π D) 12π 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz