Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 133 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 4 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 AA1A2A3A4A5A6 muntazam oltiburchakli piramidaning hajmi ga va balandligi 2 ga teng bo‘lsa, u holda AA2A6 kesim yuzini toping. A) √5 B) 3 C) 2 D) √15 2 / 30 Hisoblang: A) 1 B) 3 C) -1 D) 2 3 / 30 bo’lsa, ni x orqali ifodalang. A) 2-x B) 2/x C) x/25 D) 25/x 4 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 8 B) 5 C) 6 D) 4 5 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 32 B) 36 C) 42 D) 38 6 / 30 Teng yonli uchburchakning tomonlari 5, 5 va 6 ga teng. Bu uchburchakning bissektiritsalari va medianalari kesishgan nuqtalar A) 1,2 B) 1/2 C) 1/6 D) 1 7 / 30 m ning qanday eng katta butun qiymatida y=2x-mx-5+m funksiyaning grafigi 1,3,4 –choraklarda yotadi? A) 2 B) 3 C) 1 D) 5 8 / 30 Bekzodda 50 so’m va Sobirda 70 so’m pul bor edi. Anvar Bekzodga o’z pulining 10 foizini bergandan so’ng, Bekzod Sobirga pulining yarmini berdi. So’ng Sobir Anvarga pulining 10 foizini berdi. Anvar o’zidagi pullarini hisoblab, pullari dastlabki holdagi puli bilan teng ekanligini bildi. Anvarda qancha pul bo’lgan? A) 127 B) 375 C) 100 D) 400 9 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) 1 B) √3/2 C) 1,5 D) √5/2 10 / 30 Hisoblang. A) 17/34 B) 15/34 C) 2/34 D) 2/17 11 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 54 B) 108 C) 52√3 D) 48√3 12 / 30 x(t)=t2+7t-6 qonuniyat bo’yicha harakatlanayotgan moddiy nuqtaning tezligi harakat boshlangandan necha sekund o’tgach 87 m/s ga teng bo’ladi? A) 40 B) 36 C) 54 D) 50 13 / 30 a(x+2)=2x+1 tenglama a ning qanday qiymatida yechimga ega emas? A) (-∞;2)v(2;∞) B) (∞;∞) C) (2;∞) D) (-∞;2) 14 / 30 Tenglamaning nechta ildizi bor? |x+1|=|2x-1| A) 1 B) 4 C) 3 D) 2 15 / 30 Soddalashtiring. (0<m<7) A) m B) 2m-7 C) 7 D) 7-2m 16 / 30 Muntazam uchburchakli piramidaning yon qirrasi asos tekisligi bilan 45o li burchak tashkil etgan bo‘lsa, u holda piramidaning yon sirti yuzining uning asosi yuziga nisbatini toping. A) 4 B) 2√5 C) 3√3 D) 2√3 17 / 30 Agar f(x)=ax3-5x2+b va bo’lsa, a ni toping. A) 1 B) 2 C) 0 D) 3 18 / 30 Agar arctga+ arctgb + arctgc= bo’lsa, a+b+c ni toping. A) abc B) ab C) 1 D) ab/c 19 / 30 x2-5|x|-6=0 tenglama ildizini toping A) ±;±6 B) -1;-6 C) ±6 D) -1;6 20 / 30 Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY uchburchak qanday uchburchak bo‘ladi? A) ixtiyoriy uchburchak B) muntazam uchburchak C) teng yonli uchburchak D) to`g`ri burchakli uchburchak 21 / 30 7 sonini uchta natural sonlar yig’indisi ko’rinishida necha xil usulda yozish mumkin? A) 3 B) 6 C) 4 D) 5 22 / 30 To’rtburchakli muntazam piramidaning yon qirrasidagi ikki yoqli burchak 120 ga teng. Diagonal kesimining yuzasi S ga teng bo’lsa, uning yon sirtini toping. A) 3S B) 4S C) 2S D) 0,5S 23 / 30 To’g’ri burchakli uchburchakning yuzi 24 ga, katetlaridan biri 6 ga teng bo’lsa, gipotenuzasini toping A) 10 B) √46 C) 11 D) 12 24 / 30 y= funksiyaning aniqlanish sohasini toping A) (-∞;0])v[2;∞) B) (-∞;0)v(2;∞) C) (2;∞) D) (0,2) 25 / 30 Agar va b-a=4 bo’lsa, a+b ni toping. A) 4 B) 2 C) 3,5 D) 3 26 / 30 (-3;4) nuqtaga absissa, ordinata o’qlariga va koordinata boshiga nisbatan simmetrik bo’lgan nuqtalarni tutashtirishdan hosil bo’lgan uchburchakning eng kata tomonini toping. A) 24 B) 12 C) 10 D) 14 27 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) to’gri burchakli uchburchak B) o’tmas burchakli uchburchak C) teng tomonli uchburchak D) o’tkir burchakli uchburchak 28 / 30 Sin9x =4sin3x tenglamani yeching A) π/2+πn, n€Ζ B) πn/3, n€Ζ C) π/3+πn, n€Ζ D) πn, n€Ζ 29 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 52 B) 108 C) 54 D) 48 30 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 72° B) 90° C) 30° D) 60° 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz