Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 122 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 2 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Hisoblang A) 3√3 B) 1 C) 2√3 D) √3 2 / 30 Yuzasi 10 ga teng bo’lgan kvadratning ketma-ket ikki uchidan o’tuvchi aylana chizilgan. Uchinchi uchidan aylanaga urunma o’tkazilgan. Urunma tomondan ikki marta katta bo’lsa, aylana radiusini toping. A) 5 B) 10 C) 4 D) 6 3 / 30 Agar funksiya berilgan bo’lsa, u holda M=ning qiymatini toping. A) e⁴⁹⁵⁰ B) e⁻⁵⁰⁵⁰ C) e⁵⁰⁵⁰ D) e⁻⁴⁹⁵⁰ 4 / 30 Tenglamaning nechta ildizi bor? |x+1|=|2x-1| A) 3 B) 2 C) 4 D) 1 5 / 30 Ushbu arifmetik progressiyaning manfiy hadlari yig’indisini toping. A) -0,75 B) -0,25 C) -0,5 D) -1 6 / 30 m ning qanday eng katta butun qiymatida y=2x-mx-5+m funksiyaning grafigi 1,3,4 –choraklarda yotadi? A) 1 B) 5 C) 2 D) 3 7 / 30 Soddalashtiring. A) 2018 B) 2018a/a+1 C) a+1 D) 2019 8 / 30 Tenglamani yeching. (x+2)+(x+4)+(x+6)+…+(x+100)=2800 A) 3 B) 4 C) 7 D) 5 9 / 30 Hisoblang A) 2 B) 1 C) -1 D) 0 10 / 30 tenglamalar sistemasini yeching A) (4;3) B) (4;–3) C) (3;–4) D) (–4;3) 11 / 30 |x2-5x-14|+20≥5|x+2|+4|x-7| tengsizlikni yeching. A) [1;6] B) [2;4]v{2}v[3;∞) C) [-2;4]v{6} D) (-∞;-6]v{2}v[12;∞) 12 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4716 B) 4760 C) 4720 D) 4680 13 / 30 Quyidagilardan qaysi biri barcha lar uchun ma’noga ega (aniqlangan)? A) 4k+1/1/8:7-1/56 B) ²ᴷ⁺⁴v2k+1/k²+1 C) (512-1/2⁻⁹)° D) ⁴ᴷ⁺³√-√2k+1 14 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 54 B) 108 C) 52 D) 48 15 / 30 a(x+2)=2x+1 tenglama a ning qanday qiymatida yechimga ega emas? A) (∞;∞) B) (2;∞) C) (-∞;2) D) (-∞;2)v(2;∞) 16 / 30 x2-5|x|-6=0 tenglama ildizini toping A) -1;6 B) -1;-6 C) ±6 D) ±;±6 17 / 30 ifodaning qiymatini toping. A) -2 B) 0 C) 0,5 D) -0,5 18 / 30 Quyidagi va to’g’ri chiziqlarning o’zaro holatini aniqlang. A) o’zaro kesishadi B) o’zaro perpendikulyar C) ayqash to’gri chiziqlar D) o’zaro parallel 19 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) lg(lg x) B) ln(ln x) C) ln(lg x) D) lg(ln x) 20 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) teng tomonli uchburchak B) o’tkir burchakli uchburchak C) to’gri burchakli uchburchak D) o’tmas burchakli uchburchak 21 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 1; 2; 1,5; 1,2 ga teng bo’ladigan barcha to’g’ri to’rtburchaklar sonini toping A) 1 B) cheksiz ko’p C) 0 D) 2 22 / 30 Tenglamaning ildizlari yig’indisi va ko’paytmasining yig’indisini toping. |x+1|.|x-4|=5 A) 6 B) -6 C) 9 D) -3 23 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 10 B) 2 yoki 50 C) 50 D) 10 yoki 50 24 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 3√2+2/4 B) 3√3+1/5 C) 2√2/3 D) 5√3+3/3 25 / 30 Parallelogrammning tomonlari nisbati 3:5 kabi. Agar parallelogrmmning perimetri 48 ga burchaklaridan biri 1200 ga teng bo’lsa, uning yuzini toping. A) 67,5 B) 48√3 C) 135√3/4 D) 67,5√3 26 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) √2 B) 2 C) √3 D) 1 27 / 30 Soat 3:37 bo’lganda minut va soat millari orasidagi burchakni toping. A) 100° B) 112,5° C) 113,5° D) 113° 28 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 120 B) 60 C) 18 D) 47 29 / 30 To’g’ri to’rtburchakning perimetri 50 ga teng. Bir tomoni boshqa tomonidan 5 ga ko’p. To’g’ri to’rtburchakning yuzini toping. A) 225 B) 150 C) 50 D) 60 30 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 30° B) 72° C) 60° D) 90° 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz