Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 163 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 2 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY uchburchak qanday uchburchak bo‘ladi? A) muntazam uchburchak B) ixtiyoriy uchburchak C) to`g`ri burchakli uchburchak D) teng yonli uchburchak 2 / 30 Agar bank qo`yilgan pulga 40% yillik foyda bersa, qo`yilgan 5000 so`m pul bir yildan keyin qancha bo`ladi ? A) 7200 B) 6200 C) 6900 D) 7000 3 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) lg(ln x) B) ln(ln x) C) lg(lg x) D) ln(lg x) 4 / 30 Tenglamani yeching. (x+2)+(x+4)+(x+6)+…+(x+100)=2800 A) 4 B) 5 C) 3 D) 7 5 / 30 y= funktsiyaning aniqlanish sohasini toping. A) (2;∞) B) [2;∞) C) (-∞;2)v(2;∞) D) (-∞;2) 6 / 30 Rasmda ko‘rsatilgan ko‘pyoqlardan qaysi birida 4 ta yoq, 6 ta qirra bor? A) 1, 3 B) 3 C) 1, 2 D) 2 7 / 30 AA1A2A3A4A5A6 muntazam oltiburchakli piramidaning hajmi ga va balandligi 2 ga teng bo‘lsa, u holda AA2A6 kesim yuzini toping. A) √15 B) 2 C) 3 D) √5 8 / 30 integralning qiymatini toping. A) π/2 B) 0 C) π/4 D) -π/2 9 / 30 Tomoni 25 ga diagonallaridan biri 4 ga teng bo’lgan rombning yuzini toping. A) 8√5 B) 16 C) 24√5 D) 32 10 / 30 Agar arctga+ arctgb + arctgc= bo’lsa, a+b+c ni toping. A) ab/c B) abc C) ab D) 1 11 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 60 B) 47 C) 18 D) 120 12 / 30 Agar bank qo’yilgan pulga 40% yillik bersa, qo’yilgan 4500 so’m pul bir yildan so’ng qancha bo’ladi? A) 6300 B) 6000 C) 6200 D) 6100 13 / 30 sistemadan x+y+z ning qiymatini toping. A) 150/41 B) 140/41 C) -139/41 D) 139/41 14 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) o’tkir burchakli uchburchak B) teng tomonli uchburchak C) to’gri burchakli uchburchak D) o’tmas burchakli uchburchak 15 / 30 Hisoblang A) 3√3 B) 1 C) √3 D) 2√3 16 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 32 B) 38 C) 36 D) 42 17 / 30 sin2x-cos2x=1 tenglama [-π; 2π] oraliqda nechta ildizga ega? A) 9 B) 6 C) 7 D) 10 18 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping. A) 18 B) 17 C) 16 D) 14 19 / 30 Radiusi 25 bo’lgan doirada 48 ga teng vatar o’tkazilgan. Doira markazidan shu vatargacha masofani toping. A) 8 B) 7 C) 10 D) 9 20 / 30 Teng yonli trpetsiyaning asoslari 15 va 25 ga balandligi esa 15 ga teng trapetsiyaning dioganalini toping A) 25 B) 28 C) 30 D) 20 21 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusidan katta bo’lgan uchburchaklar sonini toping. A) 1 B) 2019 C) cheksiz ko’p D) 0 22 / 30 ABCD kvadrat ichidan olingan O nuqtadan A, B, C uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5 ga teng bo’lsa, u holda OD kesma uzunligini toping. A) 6 B) √37 C) √32 D) 3 23 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4716 B) 4680 C) 4720 D) 4760 24 / 30 Ifodani soddalashtiring. 2 cos55o.cos40o.sin55o+cos110o.sin40o A) 0 B) 1 C) 0,5 D) 2 25 / 30 ifodaning qiymatini toping. A) -2 B) 0,5 C) -0,5 D) 0 26 / 30 tenglamani yeching. A) 2017 B) 0 C) 2018 D) 2019 27 / 30 bo’lsa, ni x orqali ifodalang. A) 25/x B) x/25 C) 2-x D) 2/x 28 / 30 funktsiyaning aniqlanish sohasini toping. A) (-∞;1]v[2;∞) B) (-∞;1)v(2;∞) C) [1;2] D) (1;2) 29 / 30 Parallelogrammning tomonlari nisbati 3:5 kabi. Agar parallelogrmmning perimetri 48 ga burchaklaridan biri 1200 ga teng bo’lsa, uning yuzini toping. A) 135√3/4 B) 48√3 C) 67,5√3 D) 67,5 30 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) -4sin2x*cos(cos2x) B) 4sin2x*cos(cos2x) C) 4sin2x*cos(2cos2x) D) -4sin2x*cos(2cos2x) 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz