Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 156 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 1 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 222220175 B) 222222222222 C) 22222222220 D) 2222222175 2 / 30 Tenglamani yeching. (x+2)+(x+4)+(x+6)+…+(x+100)=2800 A) 4 B) 3 C) 7 D) 5 3 / 30 Quyidagi 2x-y+3z=2018 va x+5y+z=2019 tekisliklarning holatini aniqlang. A) ayqash B) aniqlab bo’lmaydi C) o’zaro perpendikulyar D) o’zaro parallel 4 / 30 Quyidagilardan qaysi biri barcha lar uchun ma’noga ega (aniqlangan)? A) (512-1/2⁻⁹)° B) ²ᴷ⁺⁴v2k+1/k²+1 C) 4k+1/1/8:7-1/56 D) ⁴ᴷ⁺³√-√2k+1 5 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) 8√2π/5 B) 64√2π/3 C) 3√2π/4 D) (5√3+3)π/3 6 / 30 a ning qanday qiymatlarida ushbu 7x-a-13=(a-5)(x+7) tenglama yagona yechimga ega A) a ning bunday qiymati yo’q B) a=12 C) a≠12 D) a≠5 7 / 30 Agar f(x)=ax3-5x2+b va bo’lsa, a ni toping. A) 1 B) 3 C) 2 D) 0 8 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) √2 B) 1 C) √3 D) 2 9 / 30 Tenglamaning ildizlari yig`indisini toping. A) 5 B) 6 C) 3 D) 4 10 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 1; 2; 1,5; 1,2 ga teng bo’ladigan barcha to’g’ri to’rtburchaklar sonini toping A) 2 B) 0 C) cheksiz ko’p D) 1 11 / 30 Hisoblang. A) 15/34 B) 17/34 C) 2/34 D) 2/17 12 / 30 Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY uchburchak qanday uchburchak bo‘ladi? A) to`g`ri burchakli uchburchak B) teng yonli uchburchak C) ixtiyoriy uchburchak D) muntazam uchburchak 13 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²(1+2cosα/4sin²) B) πa²(1-2sinα/4sin²) C) πa²/4cos²α D) πa²/4sin²α 14 / 30 Tomoni 6 ga teng bo`lgan teng tomonli uchburchakga tashqi chizilgan doiraning yuzini toping. A) 12π B) 7 π C) 6 π D) 10 π 15 / 30 Agar bank qo`yilgan pulga 40% yillik foyda bersa, qo`yilgan 5000 so`m pul bir yildan keyin qancha bo`ladi ? A) 7000 B) 7200 C) 6200 D) 6900 16 / 30 y=cos(2sinx) funksiyaning qiymatlar sohasini toping. A) [cos2;1] B) [-1;1] C) [0;1] D) [0;cos2] 17 / 30 Tengsizlikni yeching. A) to'g'ri javob yo'q B) 0 C) (0;+∞) D) (-1/³ √2 ;0) 18 / 30 sistema yagona yechimga ega bo’ladigan a ning barcha qiymatlari to’plamini toping. A) {2;4} B) {1;2} C) {-1;2} D) {-1;3} 19 / 30 Agar arctga+ arctgb + arctgc= bo’lsa, a+b+c ni toping. A) ab B) abc C) 1 D) ab/c 20 / 30 Bir vaqtning o’zida 9,13, . . . ,405 va 15,21, . . . ,255 ketma–ketliklarning hadlari bo’lgan sonlarning eng kattasi va eng kichigining ayirmasini toping A) 228 B) 147 C) 150 D) 231 21 / 30 Agar sinx+cosx=a bo’lsa, ning qiymatini toping. A) 1/3 B) 1/2 C) -1/2 D) 2/5 22 / 30 Radiuslari orasidagi burchagi 36o va radiusi 5 ga teng bo`lgan sektor yoyining uzunligini toping. A) 2π/3 B) π/2 C) π D) 2π 23 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 13 ga, katetlaridan biri 52 ga teng. Gipotenuzaga tushirilgan balandlik uzunligini toping A) 5 B) 4 C) 7 D) 6 24 / 30 Hisoblang A) 1/2 B) √3 C) 2 D) √3/2 25 / 30 Tomoni 12 ga teng bo`lgan teng tomonli uchburchakga ichki chizilgan aylana uzunligini toping. A) 3π B) 12π C) 2√3π D) 4√3π 26 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) o’tkir burchakli uchburchak B) teng tomonli uchburchak C) o’tmas burchakli uchburchak D) to’gri burchakli uchburchak 27 / 30 Parallelogrammning tomonlari nisbati 3:5 kabi. Agar parallelogrmmning perimetri 48 ga burchaklaridan biri 1200 ga teng bo’lsa, uning yuzini toping. A) 67,5√3 B) 67,5 C) 135√3/4 D) 48√3 28 / 30 Agar bank qo’yilgan pulga 40% yillik bersa, qo’yilgan 4500 so’m pul bir yildan so’ng qancha bo’ladi? A) 6000 B) 6200 C) 6300 D) 6100 29 / 30 Tenglamaning ildizlari yig’indisi va ko’paytmasining yig’indisini toping. |x+1|.|x-4|=5 A) 9 B) -3 C) 6 D) -6 30 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) -4sin2x*cos(cos2x) B) 4sin2x*cos(cos2x) C) 4sin2x*cos(2cos2x) D) -4sin2x*cos(2cos2x) 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz