Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 133 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 4 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 2√2/3 B) 5√3+3/3 C) 3√2+2/4 D) 3√3+1/5 2 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) lg(lg x) B) lg(ln x) C) ln(ln x) D) ln(lg x) 3 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 50 B) 10 C) 2 yoki 50 D) 10 yoki 50 4 / 30 sistemada xy ning qiymatini toping. A) 80 B) 64 C) 75 D) 60 5 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 2200 B) 1900 C) 2000 D) 2100 6 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) √5/2 B) √3/2 C) 1,5 D) 1 7 / 30 O’qishni bilmaydigan bola alifbening A,A,A, N,N, S- 6 ta harflarini ixtiyoriy ravishda terib chiqadi. Bunda ANANAS so’zining hosil bo’lish ehtimolini toping. A) 1/60 B) 5/720 C) 5/24 D) 6/720 8 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5, 6 ga teng bo’lsa, u holda AB tomon uzunligini toping. A) √37 B) √7 C) 2 D) bunday to’gri to’rtburchak mavjud emas 9 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 1; 2; 1,5; 1,2 ga teng bo’ladigan barcha to’g’ri to’rtburchaklar sonini toping A) 2 B) 1 C) cheksiz ko’p D) 0 10 / 30 Tomoni 25 ga diagonallaridan biri 4 ga teng bo’lgan rombning yuzini toping. A) 24√5 B) 16 C) 8√5 D) 32 11 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) 2 B) 1 C) √2 D) √3 12 / 30 Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY uchburchak qanday uchburchak bo‘ladi? A) muntazam uchburchak B) teng yonli uchburchak C) to`g`ri burchakli uchburchak D) ixtiyoriy uchburchak 13 / 30 Soddalashtiring. (0<m<7) A) m B) 7-2m C) 2m-7 D) 7 14 / 30 Anvar tub son o’yladi va o’ylagan sonini 5 ga ko’paytirib, 8 ni ayirgan edi, yana tub son hosil bo’ldi. Anvar qanday son o’ylagan? A) 374389 B) 412967 C) 2 D) aniqlab bo’lmaydi 15 / 30 Teng yonli trpetsiyaning asoslari 15 va 25 ga balandligi esa 15 ga teng trapetsiyaning dioganalini toping A) 30 B) 28 C) 20 D) 25 16 / 30 Agar sinx+cosx=a bo’lsa, ning qiymatini toping. A) 1/3 B) 2/5 C) -1/2 D) 1/2 17 / 30 Bir vaqtning o’zida 9,13, . . . ,405 va 15,21, . . . ,255 ketma–ketliklarning hadlari bo’lgan sonlarning eng kattasi va eng kichigining ayirmasini toping A) 228 B) 147 C) 231 D) 150 18 / 30 sistemadan x+y ning qiymatini toping. A) 12 B) 6 C) 35/4 D) -12 19 / 30 Hisoblang: A) 3 B) -1 C) 1 D) 2 20 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) -4sin2x*cos(2cos2x) B) 4sin2x*cos(2cos2x) C) 4sin2x*cos(cos2x) D) -4sin2x*cos(cos2x) 21 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 222222222222 B) 2222222175 C) 222220175 D) 22222222220 22 / 30 Quyidagi 2x-y+3z=2018 va x+5y+z=2019 tekisliklarning holatini aniqlang. A) o’zaro parallel B) aniqlab bo’lmaydi C) ayqash D) o’zaro perpendikulyar 23 / 30 funksiya uchun quyidagi mulohazalardan qaysi biri o’rinli? A) bunday funksiya mavjud emas B) toq funksiya C) juft funksiya D) juft ham emas, toq ham emas funksiya 24 / 30 Rasmda ko‘rsatilgan ko‘pyoqlardan qaysi birida 4 ta yoq, 6 ta qirra bor? A) 2 B) 1, 3 C) 1, 2 D) 3 25 / 30 Muntazam uchburchakli piramidaning yon qirrasi asos tekisligi bilan 45o li burchak tashkil etgan bo‘lsa, u holda piramidaning yon sirti yuzining uning asosi yuziga nisbatini toping. A) 3√3 B) 2√5 C) 4 D) 2√3 26 / 30 Ushbu arifmetik progressiyaning manfiy hadlari yig’indisini toping. A) -0,5 B) -0,25 C) -0,75 D) -1 27 / 30 tenglamalar sistemasini yeching A) (3;–4) B) (4;–3) C) (–4;3) D) (4;3) 28 / 30 y=cos(2sinx) funksiyaning qiymatlar sohasini toping. A) [-1;1] B) [cos2;1] C) [0;1] D) [0;cos2] 29 / 30 Tomoni 2 ga teng kvadratga tashqi chizilgan aylana uzunligini toping. A) 4π B) 2π C) 2π/3 D) 3π 30 / 30 Hisoblang. A) 2/34 B) 15/34 C) 2/17 D) 17/34 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz