Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 133 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 4 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 sonning oxirgi raqamini toping. A) 4 B) 2 C) 8 D) 6 2 / 30 A) 2 B) 1 C) 5 D) 3 3 / 30 Hisoblang A) √3 B) 2 C) 1/2 D) √3/2 4 / 30 Rasmda ko‘rsatilgan ko‘pyoqlardan qaysi birida 4 ta yoq, 6 ta qirra bor? A) 1, 2 B) 2 C) 1, 3 D) 3 5 / 30 sistemada xy ning qiymatini toping. A) 64 B) 75 C) 80 D) 60 6 / 30 Bekzodda 50 so’m va Sobirda 70 so’m pul bor edi. Anvar Bekzodga o’z pulining 10 foizini bergandan so’ng, Bekzod Sobirga pulining yarmini berdi. So’ng Sobir Anvarga pulining 10 foizini berdi. Anvar o’zidagi pullarini hisoblab, pullari dastlabki holdagi puli bilan teng ekanligini bildi. Anvarda qancha pul bo’lgan? A) 400 B) 100 C) 375 D) 127 7 / 30 O’qishni bilmaydigan bola alifbening A,A,A, N,N, S- 6 ta harflarini ixtiyoriy ravishda terib chiqadi. Bunda ANANAS so’zining hosil bo’lish ehtimolini toping. A) 1/60 B) 5/720 C) 6/720 D) 5/24 8 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (4; -3) B) (-7;-1) C) (-7; 1) D) (7; 1) 9 / 30 Agar sinx+cosx=a bo’lsa, ning qiymatini toping. A) -1/2 B) 1/2 C) 1/3 D) 2/5 10 / 30 Quyidagi va to’g’ri chiziqlarning o’zaro holatini aniqlang. A) o’zaro parallel B) ayqash to’gri chiziqlar C) o’zaro kesishadi D) o’zaro perpendikulyar 11 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 1; 2; 1,5; 1,2 ga teng bo’ladigan barcha to’g’ri to’rtburchaklar sonini toping A) cheksiz ko’p B) 2 C) 1 D) 0 12 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 4 B) 8 C) 5 D) 6 13 / 30 n ning qanday qiymatida ushbu 81 .82 .83 .….8n=51222 tenglik o’rinli bo’ladi? A) 14 B) 12 C) 10 D) 11 14 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) lg(ln x) B) lg(lg x) C) ln(ln x) D) ln(lg x) 15 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 2√2/3 B) 3√3+1/5 C) 3√2+2/4 D) 5√3+3/3 16 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²(1-2sinα/4sin²) B) πa²/4sin²α C) πa²(1+2cosα/4sin²) D) πa²/4cos²α 17 / 30 bo’lsa ni toping. Bunda funksiya f(x) ga teskari funksiya. A) -14 B) -10 C) -4 D) -12 18 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 48 B) 54 C) 108 D) 52 19 / 30 Agar va b-a=4 bo’lsa, a+b ni toping. A) 4 B) 3 C) 2 D) 3,5 20 / 30 “Tutgan balig‘ining og‘irligi qancha?” degan savolga baliqchi: “Baliqning dumi 3 kg, boshi uning dumi hamda tanasi yarmining og‘irligiga teng, tanasi esa boshi va dumining og‘irligiga teng”, deb javob berdi. Baliqning og‘irligini (kg) toping. A) 12 B) 3 C) 18 D) 6 21 / 30 ABC muntazam uchburchak ichidan ixtiyoriy P nuqta olinib, undan BC, CA va AB tomonlarga mos ravishda PD, PE va PF perpendikulyarlar tushirilgan bo’lsa,ni toping. A) 1 B) 0,5 C) 1/√2 D) 1/√3 22 / 30 a ning 7x-a-13=(a-5)(x+7) tenglama yechimga ega bo’lmaydigan qiymatining natural bo’luvchilar sonini toping. A) 6 B) 4 C) 12 D) 8 23 / 30 integralning qiymatini toping. A) -π/2 B) π/2 C) 0 D) π/4 24 / 30 Soat 3:37 bo’lganda minut va soat millari orasidagi burchakni toping. A) 113° B) 100° C) 113,5° D) 112,5° 25 / 30 tenglamalar sistemasini yeching A) (–4;3) B) (3;–4) C) (4;3) D) (4;–3) 26 / 30 a=sin 1; b=sin 2; c=sin 3; d=sin 4 va e=sin 5 sonlarni kamayish tartibida joylashtiring. A) b>a>c>d>e B) b>c>a>d>e C) e>b>a>d>c D) a>b>c>d>e 27 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 3 B) 4 C) 1 D) 2 28 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 38 B) 42 C) 32 D) 36 29 / 30 Tenglamani yeching. |x2-11x+10|=x2-11x+10 A) [10;∞) B) (-∞;1] C) (-∞;1]v[10;∞) D) 1; 10 30 / 30 funktsiyaning aniqlanish sohasini toping. A) (1;2) B) (-∞;1)v(2;∞) C) (-∞;1]v[2;∞) D) [1;2] 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz