Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 150 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 integralning qiymatini toping. A) π/4 B) -π/2 C) 0 D) π/2 2 / 30 y= funktsiyaning aniqlanish sohasini toping. A) (2;∞) B) (-∞;2) C) [2;∞) D) (-∞;2)v(2;∞) 3 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 48 B) 52 C) 54 D) 108 4 / 30 A) 0 B) 2 C) √6 D) 1 5 / 30 Hisoblang. A) 15/34 B) 2/17 C) 17/34 D) 2/34 6 / 30 Ifodani soddalashtiring. 2 cos55o.cos40o.sin55o+cos110o.sin40o A) 0,5 B) 0 C) 2 D) 1 7 / 30 Soat 3:37 bo’lganda minut va soat millari orasidagi burchakni toping. A) 113,5° B) 113° C) 100° D) 112,5° 8 / 30 bo’lsa ni toping. Bunda funksiya f(x) ga teskari funksiya. A) -10 B) -14 C) -12 D) -4 9 / 30 Agar f(x)=4x3-6x2-2x+3x .log3e bo’lsa, u holda ni toping. A) √2e B) 3e C) e D) 1 10 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 13 ga, katetlaridan biri 52 ga teng. Gipotenuzaga tushirilgan balandlik uzunligini toping A) 5 B) 4 C) 7 D) 6 11 / 30 7 sonini uchta natural sonlar yig’indisi ko’rinishida necha xil usulda yozish mumkin? A) 3 B) 6 C) 5 D) 4 12 / 30 Agar va b-a=4 bo’lsa, a+b ni toping. A) 3 B) 2 C) 3,5 D) 4 13 / 30 Ushbu arifmetik progressiyaning manfiy hadlari yig’indisini toping. A) -0,75 B) -0,5 C) -0,25 D) -1 14 / 30 Rasmda ko‘rsatilgan ko‘pyoqlardan qaysi birida 4 ta yoq, 6 ta qirra bor? A) 3 B) 1, 2 C) 1, 3 D) 2 15 / 30 O’qishni bilmaydigan bola alifbening A,A,A, N,N, S- 6 ta harflarini ixtiyoriy ravishda terib chiqadi. Bunda ANANAS so’zining hosil bo’lish ehtimolini toping. A) 6/720 B) 1/60 C) 5/24 D) 5/720 16 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 60° B) 72° C) 30° D) 90° 17 / 30 tenglamalar sistemasini yeching A) (-4;4) B) (4;–4) C) (4;4) D) (-4;-4) 18 / 30 sin2x-cos2x=1 tenglama [-π; 2π] oraliqda nechta ildizga ega? A) 7 B) 10 C) 9 D) 6 19 / 30 ifodaning qiymatini toping. A) 0,5 B) -2 C) -0,5 D) 0 20 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusidan katta bo’lgan uchburchaklar sonini toping. A) cheksiz ko’p B) 0 C) 2019 D) 1 21 / 30 m ning qanday eng katta butun qiymatida y=2x-mx-5+m funksiyaning grafigi 1,3,4 –choraklarda yotadi? A) 1 B) 5 C) 2 D) 3 22 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) lg(lg x) B) ln(lg x) C) ln(ln x) D) lg(ln x) 23 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 1; 2; 1,5; 1,2 ga teng bo’ladigan barcha to’g’ri to’rtburchaklar sonini toping A) 0 B) 2 C) cheksiz ko’p D) 1 24 / 30 x(t)=t2+6t+5 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakat boshlangandan necha sekund o’tgach boshlang’ich nuqtaga nisbatan 77 metr masofaga siljiydi? A) 6 B) 8 C) 10 D) 7 25 / 30 Parallelogrammning tomonlari nisbati 3:5 kabi. Agar parallelogrmmning perimetri 48 ga burchaklaridan biri 1200 ga teng bo’lsa, uning yuzini toping. A) 67,5√3 B) 135√3/4 C) 48√3 D) 67,5 26 / 30 Fazoda (1;2;3) nuqtalardan o’tuvchi to’g’ri chiziq tenglamasini tuzing. A) x-1/2=y-2/3=z-3/4 B) 2x+3y+z=0 C) x=y/3=z/2 D) -x-y+z=0 27 / 30 x(t)=t2+7t-6 qonuniyat bo’yicha harakatlanayotgan moddiy nuqtaning tezligi harakat boshlangandan necha sekund o’tgach 87 m/s ga teng bo’ladi? A) 54 B) 50 C) 36 D) 40 28 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²/4cos²α B) πa²/4sin²α C) πa²(1+2cosα/4sin²) D) πa²(1-2sinα/4sin²) 29 / 30 Soddalashtiring. A) 2018 B) 2019 C) 2018a/a+1 D) a+1 30 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) √3 B) 1 C) √2 D) 2 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz