Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 158 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 1 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 tenglamalar sistemasini yeching A) (4;4) B) (-4;-4) C) (4;–4) D) (-4;4) 2 / 30 bo’lsa, ni x orqali ifodalang. A) 2/x B) 2-x C) x/25 D) 25/x 3 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusidan katta bo’lgan uchburchaklar sonini toping. A) 2019 B) 1 C) 0 D) cheksiz ko’p 4 / 30 a(x+2)=2x+1 tenglama a ning qanday qiymatida yechimga ega emas? A) (-∞;2)v(2;∞) B) (-∞;2) C) (∞;∞) D) (2;∞) 5 / 30 |x2-5x-14|+20≥5|x+2|+4|x-7| tengsizlikni yeching. A) [2;4]v{2}v[3;∞) B) [-2;4]v{6} C) [1;6] D) (-∞;-6]v{2}v[12;∞) 6 / 30 Quyidagilardan qaysi biri barcha lar uchun ma’noga ega (aniqlangan)? A) ²ᴷ⁺⁴v2k+1/k²+1 B) ⁴ᴷ⁺³√-√2k+1 C) (512-1/2⁻⁹)° D) 4k+1/1/8:7-1/56 7 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) 4sin2x*cos(cos2x) B) -4sin2x*cos(cos2x) C) -4sin2x*cos(2cos2x) D) 4sin2x*cos(2cos2x) 8 / 30 sistema a ning qanday qiymatida cheksiz ko’p yechimga ega? A) (-∞;6])v[6;∞) B) (2;∞) C) 6 D) (-∞;6) 9 / 30 funksiya uchun quyidagi mulohazalardan qaysi biri o’rinli? A) juft funksiya B) toq funksiya C) juft ham emas, toq ham emas funksiya D) bunday funksiya mavjud emas 10 / 30 Muntazam uchburchakli piramidaning yon qirrasi asos tekisligi bilan 45o li burchak tashkil etgan bo‘lsa, u holda piramidaning yon sirti yuzining uning asosi yuziga nisbatini toping. A) 3√3 B) 2√5 C) 2√3 D) 4 11 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 30° B) 90° C) 72° D) 60° 12 / 30 y=cos(2sinx) funksiyaning qiymatlar sohasini toping. A) [0;cos2] B) [0;1] C) [-1;1] D) [cos2;1] 13 / 30 Tomoni 25 ga diagonallaridan biri 4 ga teng bo’lgan rombning yuzini toping. A) 24√5 B) 16 C) 8√5 D) 32 14 / 30 a ning 7x-a-13=(a-5)(x+7) tenglama yechimga ega bo’lmaydigan qiymatining natural bo’luvchilar sonini toping. A) 6 B) 12 C) 8 D) 4 15 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 10 yoki 50 B) 50 C) 2 yoki 50 D) 10 16 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 2√2/3 B) 3√3+1/5 C) 3√2+2/4 D) 5√3+3/3 17 / 30 Agar f(x)=4x3-6x2-2x+3x .log3e bo’lsa, u holda ni toping. A) 3e B) 1 C) √2e D) e 18 / 30 Radiuslari orasidagi burchagi 36o va radiusi 5 ga teng bo`lgan sektor yoyining uzunligini toping. A) 2π B) π/2 C) π D) 2π/3 19 / 30 Hisoblang. A) 15/34 B) 2/17 C) 17/34 D) 2/34 20 / 30 ABCD kvadrat ichidan olingan O nuqtadan A, B, C uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5 ga teng bo’lsa, u holda OD kesma uzunligini toping. A) 3 B) 6 C) √37 D) √32 21 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) √2 B) 4 C) 2√2 D) 2 22 / 30 Hisoblang A) √3 B) 2 C) √3/2 D) 1/2 23 / 30 sin2x-cos2x=1 tenglama [-π; 2π] oraliqda nechta ildizga ega? A) 9 B) 10 C) 7 D) 6 24 / 30 Tenglamaning nechta ildizi bor? |x+1|=|2x-1| A) 3 B) 4 C) 1 D) 2 25 / 30 tenglamani yeching. A) 0 B) 2018 C) 2017 D) 2019 26 / 30 Tenglamani yeching. (x+2)+(x+4)+(x+6)+…+(x+100)=2800 A) 3 B) 7 C) 5 D) 4 27 / 30 Soddalashtiring. A) 2018 B) 2019 C) 2018a/a+1 D) a+1 28 / 30 To’g’ri to’rtburchakning perimetri 50 ga teng. Bir tomoni boshqa tomonidan 5 ga ko’p. To’g’ri to’rtburchakning yuzini toping. A) 150 B) 225 C) 60 D) 50 29 / 30 Ifodani soddalashtiring. 2 cos55o.cos40o.sin55o+cos110o.sin40o A) 1 B) 0 C) 0,5 D) 2 30 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 120 B) 47 C) 18 D) 60 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz