Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 153 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 sistema a ning qanday qiymatida cheksiz ko’p yechimga ega? A) (-∞;6])v[6;∞) B) 6 C) (2;∞) D) (-∞;6) 2 / 30 Ag ar tgα=2 bo’lsa, u holda ni hisoblang A) 10/3 B) -10/3 C) -10/27 D) 10/27 3 / 30 Sin9x =4sin3x tenglamani yeching A) πn, n€Ζ B) π/2+πn, n€Ζ C) π/3+πn, n€Ζ D) πn/3, n€Ζ 4 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 1900 B) 2200 C) 2000 D) 2100 5 / 30 Hisoblang. A) 15/34 B) 2/34 C) 2/17 D) 17/34 6 / 30 Tenglamaning ildizlari yig`indisini toping. A) 4 B) 6 C) 5 D) 3 7 / 30 tenglamani yeching. A) 2018 B) 2017 C) 2019 D) 0 8 / 30 Tomoni 12 ga teng bo`lgan teng tomonli uchburchakga ichki chizilgan aylana uzunligini toping. A) 2√3π B) 12π C) 3π D) 4√3π 9 / 30 x2-5|x|-6=0 tenglama ildizini toping A) ±6 B) ±;±6 C) -1;-6 D) -1;6 10 / 30 Tenglamani yeching. |x2-11x+10|=x2-11x+10 A) 1; 10 B) (-∞;1] C) (-∞;1]v[10;∞) D) [10;∞) 11 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusidan katta bo’lgan uchburchaklar sonini toping. A) 0 B) 1 C) cheksiz ko’p D) 2019 12 / 30 Agar bank qo`yilgan pulga 40% yillik foyda bersa, qo`yilgan 5000 so`m pul bir yildan keyin qancha bo`ladi ? A) 6900 B) 7200 C) 6200 D) 7000 13 / 30 Bog’bon uch kun davomida o’nta daraxt ko’chati o’tqazishi lozim. Agar bog’bon bir kunda eng kamida bitta ko’chat o’tqazadigan bo’lsa, u shu ishni kunlar bo’yicha necha xil usul bilan taqsimlashi mumkin? A) 30 B) 32 C) 36 D) 25 14 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 10 B) 9 C) 12 D) 11 15 / 30 bo’lsa ni toping. Bunda funksiya f(x) ga teskari funksiya. A) -12 B) -14 C) -4 D) -10 16 / 30 sistema yagona yechimga ega bo’ladigan a ning barcha qiymatlari to’plamini toping. A) {-1;3} B) {-1;2} C) {1;2} D) {2;4} 17 / 30 Tomoni 6 ga teng bo`lgan teng tomonli uchburchakga tashqi chizilgan doiraning yuzini toping. A) 12π B) 6 π C) 10 π D) 7 π 18 / 30 ifodaning qiymatini toping. A) -2 B) 0,5 C) -0,5 D) 0 19 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 4π/3 B) 3π/2 C) 2π/3 D) 3π/4 20 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 54 B) 48√3 C) 52√3 D) 108 21 / 30 Qaysi javobda faqat juft funksiyalar ko’rsatilgan? A) 1, 3 B) 3, 4 C) 1,4 D) 2, 3 22 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakning perimetri 48 va aylana radiusi 7 ga teng bo‘lsa, u holda kesma uzunligini toping A) 25 B) 30 C) 15 D) 12 23 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 54 B) 48 C) 52 D) 108 24 / 30 Hisoblang A) -1 B) 2 C) 1 D) 0 25 / 30 Tenglamani yeching. (x+2)+(x+4)+(x+6)+…+(x+100)=2800 A) 5 B) 3 C) 4 D) 7 26 / 30 Quyidagi 2x-y+3z=2018 va x+5y+z=2019 tekisliklarning holatini aniqlang. A) aniqlab bo’lmaydi B) o’zaro perpendikulyar C) o’zaro parallel D) ayqash 27 / 30 To’g’ri burchakli uchburchakning yuzi 24 ga, katetlaridan biri 6 ga teng bo’lsa, gipotenuzasini toping A) 12 B) 11 C) 10 D) √46 28 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) teng tomonli uchburchak B) o’tmas burchakli uchburchak C) o’tkir burchakli uchburchak D) to’gri burchakli uchburchak 29 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 6 B) 4 C) 8 D) 5 30 / 30 Bir vaqtning o’zida 9,13, . . . ,405 va 15,21, . . . ,255 ketma–ketliklarning hadlari bo’lgan sonlarning eng kattasi va eng kichigining ayirmasini toping A) 228 B) 150 C) 231 D) 147 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz