Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 129 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 4 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 y= funktsiyaning aniqlanish sohasini toping. A) [2;∞) B) (-∞;2) C) (-∞;2)v(2;∞) D) (2;∞) 2 / 30 Agar f(x)=ax3-5x2+b va bo’lsa, a ni toping. A) 2 B) 0 C) 3 D) 1 3 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 4π/3 B) 3π/4 C) 3π/2 D) 2π/3 4 / 30 7 sonini uchta natural sonlar yig’indisi ko’rinishida necha xil usulda yozish mumkin? A) 5 B) 4 C) 6 D) 3 5 / 30 Bir vaqtning o’zida 9,13, . . . ,405 va 15,21, . . . ,255 ketma–ketliklarning hadlari bo’lgan sonlarning eng kattasi va eng kichigining ayirmasini toping A) 231 B) 150 C) 147 D) 228 6 / 30 a(x+2)=2x+1 tenglama a ning qanday qiymatida yechimga ega emas? A) (-∞;2)v(2;∞) B) (-∞;2) C) (∞;∞) D) (2;∞) 7 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 52√3 B) 108 C) 54 D) 48√3 8 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) 2 B) 4 C) √2 D) 2√2 9 / 30 Parallelogrammning tomonlari nisbati 3:5 kabi. Agar parallelogrmmning perimetri 48 ga burchaklaridan biri 1200 ga teng bo’lsa, uning yuzini toping. A) 135√3/4 B) 48√3 C) 67,5 D) 67,5√3 10 / 30 m ning qanday eng katta butun qiymatida y=2x-mx-5+m funksiyaning grafigi 1,3,4 –choraklarda yotadi? A) 2 B) 3 C) 5 D) 1 11 / 30 Tengsizlikni yeching. A) (-4;2)v(2;3) B) (2;4) C) (-3;2) D) (-3;2)v(2;4) 12 / 30 To’rtburchakli muntazam piramidaning yon qirrasidagi ikki yoqli burchak 120 ga teng. Diagonal kesimining yuzasi S ga teng bo’lsa, uning yon sirtini toping. A) 3S B) 2S C) 0,5S D) 4S 13 / 30 Teng yonli trpetsiyaning asoslari 15 va 25 ga balandligi esa 15 ga teng trapetsiyaning dioganalini toping A) 25 B) 28 C) 20 D) 30 14 / 30 x2-5|x|-6=0 tenglama ildizini toping A) -1;-6 B) -1;6 C) ±6 D) ±;±6 15 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4720 B) 4680 C) 4716 D) 4760 16 / 30 sin2x-cos2x=1 tenglama [-π; 2π] oraliqda nechta ildizga ega? A) 7 B) 6 C) 10 D) 9 17 / 30 To’g’ri burchakli uchburchakning yuzi 24 ga, katetlaridan biri 6 ga teng bo’lsa, gipotenuzasini toping A) 10 B) 11 C) √46 D) 12 18 / 30 sonning oxirgi raqamini toping. A) 8 B) 6 C) 2 D) 4 19 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) ln(lg x) B) lg(ln x) C) lg(lg x) D) ln(ln x) 20 / 30 a ning 7x-a-13=(a-5)(x+7) tenglama yechimga ega bo’lmaydigan qiymatining natural bo’luvchilar sonini toping. A) 6 B) 4 C) 12 D) 8 21 / 30 To’g’ri to’rtburchakning perimetri 50 ga teng. Bir tomoni boshqa tomonidan 5 ga ko’p. To’g’ri to’rtburchakning yuzini toping. A) 225 B) 50 C) 60 D) 150 22 / 30 Ag ar tgα=2 bo’lsa, u holda ni hisoblang A) -10/27 B) 10/3 C) 10/27 D) -10/3 23 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 38 B) 32 C) 36 D) 42 24 / 30 sistemadan x+y+z ning qiymatini toping. A) 150/41 B) 139/41 C) 140/41 D) -139/41 25 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 60° B) 72° C) 30° D) 90° 26 / 30 Ifodani soddalashtiring. 2 cos55o.cos40o.sin55o+cos110o.sin40o A) 0 B) 0,5 C) 2 D) 1 27 / 30 Quyidagi 2x-y+3z=2018 va x+5y+z=2019 tekisliklarning holatini aniqlang. A) o’zaro perpendikulyar B) o’zaro parallel C) aniqlab bo’lmaydi D) ayqash 28 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 1; 2; 1,5; 1,2 ga teng bo’ladigan barcha to’g’ri to’rtburchaklar sonini toping A) 1 B) 0 C) cheksiz ko’p D) 2 29 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) 8√2π/5 B) (5√3+3)π/3 C) 3√2π/4 D) 64√2π/3 30 / 30 Agar sinx+cosx=a bo’lsa, ning qiymatini toping. A) 2/5 B) -1/2 C) 1/3 D) 1/2 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz