Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 133 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 4 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Ostki asosining yuzi 32π va ustki asosining yuzi 18π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning sirtini toping. A) 96π B) 56π C) 72π D) 100π 2 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 13 ga, katetlaridan biri 52 ga teng. Gipotenuzaga tushirilgan balandlik uzunligini toping A) 7 B) 5 C) 6 D) 4 3 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) -4sin2x*cos(cos2x) B) 4sin2x*cos(cos2x) C) -4sin2x*cos(2cos2x) D) 4sin2x*cos(2cos2x) 4 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4716 B) 4760 C) 4680 D) 4720 5 / 30 Yuzasi 10 ga teng bo’lgan kvadratning ketma-ket ikki uchidan o’tuvchi aylana chizilgan. Uchinchi uchidan aylanaga urunma o’tkazilgan. Urunma tomondan ikki marta katta bo’lsa, aylana radiusini toping. A) 5 B) 4 C) 10 D) 6 6 / 30 Agar f(x)=4x3-6x2-2x+3x .log3e bo’lsa, u holda ni toping. A) √2e B) 3e C) 1 D) e 7 / 30 Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY uchburchak qanday uchburchak bo‘ladi? A) ixtiyoriy uchburchak B) teng yonli uchburchak C) muntazam uchburchak D) to`g`ri burchakli uchburchak 8 / 30 funktsiyaning aniqlanish sohasini toping. A) (1;2) B) (-∞;1)v(2;∞) C) [1;2] D) (-∞;1]v[2;∞) 9 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²(1-2sinα/4sin²) B) πa²(1+2cosα/4sin²) C) πa²/4cos²α D) πa²/4sin²α 10 / 30 sistema yagona yechimga ega bo’ladigan a ning barcha qiymatlari to’plamini toping. A) {1;2} B) {-1;3} C) {2;4} D) {-1;2} 11 / 30 Hisoblang A) 0 B) -1 C) 1 D) 2 12 / 30 Ushbu arifmetik progressiyaning manfiy hadlari yig’indisini toping. A) -0,25 B) -1 C) -0,75 D) -0,5 13 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 108 B) 54 C) 48 D) 52 14 / 30 (-3;4) nuqtaga absissa, ordinata o’qlariga va koordinata boshiga nisbatan simmetrik bo’lgan nuqtalarni tutashtirishdan hosil bo’lgan uchburchakning eng kata tomonini toping. A) 14 B) 10 C) 12 D) 24 15 / 30 To’g’ri to’rtburchakning perimetri 50 ga teng. Bir tomoni boshqa tomonidan 5 ga ko’p. To’g’ri to’rtburchakning yuzini toping. A) 60 B) 150 C) 225 D) 50 16 / 30 Soat 3:37 bo’lganda minut va soat millari orasidagi burchakni toping. A) 113° B) 113,5° C) 100° D) 112,5° 17 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 6 B) 5 C) 4 D) 8 18 / 30 Hisoblang A) √3 B) 1/2 C) √3/2 D) 2 19 / 30 ABCD kvadrat ichidan olingan O nuqtadan A, B, C uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5 ga teng bo’lsa, u holda OD kesma uzunligini toping. A) √37 B) √32 C) 6 D) 3 20 / 30 Agar f(x)=ax3-5x2+b va bo’lsa, a ni toping. A) 3 B) 0 C) 2 D) 1 21 / 30 sistemadan x+y+z ning qiymatini toping. A) 150/41 B) 140/41 C) -139/41 D) 139/41 22 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5, 6 ga teng bo’lsa, u holda AB tomon uzunligini toping. A) bunday to’gri to’rtburchak mavjud emas B) √7 C) √37 D) 2 23 / 30 AA1A2A3A4A5A6 muntazam oltiburchakli piramidaning hajmi ga va balandligi 2 ga teng bo‘lsa, u holda AA2A6 kesim yuzini toping. A) √15 B) 3 C) 2 D) √5 24 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 22222222220 B) 222222222222 C) 222220175 D) 2222222175 25 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 52√3 B) 48√3 C) 108 D) 54 26 / 30 Hisoblang. A) 2/17 B) 2/34 C) 15/34 D) 17/34 27 / 30 x(t)=t2+7t-6 qonuniyat bo’yicha harakatlanayotgan moddiy nuqtaning tezligi harakat boshlangandan necha sekund o’tgach 87 m/s ga teng bo’ladi? A) 50 B) 36 C) 40 D) 54 28 / 30 n ning qanday qiymatida ushbu 81 .82 .83 .….8n=51222 tenglik o’rinli bo’ladi? A) 14 B) 11 C) 10 D) 12 29 / 30 y=cos(2sinx) funksiyaning qiymatlar sohasini toping. A) [0;1] B) [cos2;1] C) [-1;1] D) [0;cos2] 30 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) o’tmas burchakli uchburchak B) to’gri burchakli uchburchak C) o’tkir burchakli uchburchak D) teng tomonli uchburchak 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz