Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 132 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 4 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Tenglamani yeching. (x+2)+(x+4)+(x+6)+…+(x+100)=2800 A) 5 B) 7 C) 3 D) 4 2 / 30 Radiusi 25 bo’lgan doirada 48 ga teng vatar o’tkazilgan. Doira markazidan shu vatargacha masofani toping. A) 7 B) 10 C) 8 D) 9 3 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4680 B) 4716 C) 4760 D) 4720 4 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 1900 B) 2100 C) 2200 D) 2000 5 / 30 Tengsizlikni yeching. A) (-1/³ √2 ;0) B) 0 C) to'g'ri javob yo'q D) (0;+∞) 6 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) 1,5 B) √5/2 C) 1 D) √3/2 7 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 10 B) 9 C) 11 D) 12 8 / 30 Tenglamaning ildizlari yig’indisi va ko’paytmasining yig’indisini toping. |x+1|.|x-4|=5 A) -6 B) -3 C) 6 D) 9 9 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) 8√2π/5 B) (5√3+3)π/3 C) 3√2π/4 D) 64√2π/3 10 / 30 Ostki asosining yuzi 32π va ustki asosining yuzi 18π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning sirtini toping. A) 96π B) 72π C) 100π D) 56π 11 / 30 n ning qanday qiymatida ushbu 81 .82 .83 .….8n=51222 tenglik o’rinli bo’ladi? A) 11 B) 14 C) 12 D) 10 12 / 30 Rombning balandligi 8 ga dioganallarining ko’paytmasi 80 ga teng. Rombning perimetrini toping A) 16 B) 20 C) 24 D) 32 13 / 30 Tomoni 12 ga teng bo`lgan teng tomonli uchburchakga ichki chizilgan aylana uzunligini toping. A) 2√3π B) 4√3π C) 12π D) 3π 14 / 30 Bekzodda 50 so’m va Sobirda 70 so’m pul bor edi. Anvar Bekzodga o’z pulining 10 foizini bergandan so’ng, Bekzod Sobirga pulining yarmini berdi. So’ng Sobir Anvarga pulining 10 foizini berdi. Anvar o’zidagi pullarini hisoblab, pullari dastlabki holdagi puli bilan teng ekanligini bildi. Anvarda qancha pul bo’lgan? A) 127 B) 100 C) 375 D) 400 15 / 30 Qaysi javobda faqat juft funksiyalar ko’rsatilgan? A) 1,4 B) 3, 4 C) 1, 3 D) 2, 3 16 / 30 To‘g‘ri to‘rtburchakning eni 25% ga orttirildi, bo‘yi esa 25% ga kamaytirildi. Natijada uning yuzi qanday o‘zgardi? A) 6,25% ga kamayadi B) 2,5% ga ortadi C) o‘zgarmaydi D) 6,25% ga ortadi 17 / 30 sistema yagona yechimga ega bo’ladigan a ning barcha qiymatlari to’plamini toping. A) {-1;2} B) {1;2} C) {2;4} D) {-1;3} 18 / 30 Anvar tub son o’yladi va o’ylagan sonini 5 ga ko’paytirib, 8 ni ayirgan edi, yana tub son hosil bo’ldi. Anvar qanday son o’ylagan? A) 2 B) aniqlab bo’lmaydi C) 412967 D) 374389 19 / 30 (-3;4) nuqtaga absissa, ordinata o’qlariga va koordinata boshiga nisbatan simmetrik bo’lgan nuqtalarni tutashtirishdan hosil bo’lgan uchburchakning eng kata tomonini toping. A) 12 B) 14 C) 24 D) 10 20 / 30 Agar arctga+ arctgb + arctgc= bo’lsa, a+b+c ni toping. A) ab/c B) ab C) abc D) 1 21 / 30 y=cos(2sinx) funksiyaning qiymatlar sohasini toping. A) [-1;1] B) [cos2;1] C) [0;1] D) [0;cos2] 22 / 30 Hisoblang A) 1/2 B) √3 C) √3/2 D) 2 23 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) 2 B) 2√2 C) 4 D) √2 24 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) o’tmas burchakli uchburchak B) teng tomonli uchburchak C) to’gri burchakli uchburchak D) o’tkir burchakli uchburchak 25 / 30 Agar sinx+cosx=a bo’lsa, ning qiymatini toping. A) 1/2 B) -1/2 C) 2/5 D) 1/3 26 / 30 Quyidagi 2x-y+3z=2018 va x+5y+z=2019 tekisliklarning holatini aniqlang. A) o’zaro parallel B) aniqlab bo’lmaydi C) o’zaro perpendikulyar D) ayqash 27 / 30 Bog’bon uch kun davomida o’nta daraxt ko’chati o’tqazishi lozim. Agar bog’bon bir kunda eng kamida bitta ko’chat o’tqazadigan bo’lsa, u shu ishni kunlar bo’yicha necha xil usul bilan taqsimlashi mumkin? A) 25 B) 36 C) 30 D) 32 28 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 10 B) 50 C) 10 yoki 50 D) 2 yoki 50 29 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 2222222175 B) 222220175 C) 222222222222 D) 22222222220 30 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 1 B) 2 C) 3 D) 4 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz