Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 181 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 1 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Tengsizlikni yeching. A) (2;4) B) (-3;2)v(2;4) C) (-3;2) D) (-4;2)v(2;3) 2 / 30 To‘g‘ri to‘rtburchakning eni 25% ga orttirildi, bo‘yi esa 25% ga kamaytirildi. Natijada uning yuzi qanday o‘zgardi? A) 6,25% ga kamayadi B) 6,25% ga ortadi C) o‘zgarmaydi D) 2,5% ga ortadi 3 / 30 To’rtburchakli muntazam piramidaning yon qirrasidagi ikki yoqli burchak 120 ga teng. Diagonal kesimining yuzasi S ga teng bo’lsa, uning yon sirtini toping. A) 2S B) 0,5S C) 3S D) 4S 4 / 30 Hisoblang A) 1 B) 2√3 C) √3 D) 3√3 5 / 30 Quyidagilardan qaysi biri barcha lar uchun ma’noga ega (aniqlangan)? A) ⁴ᴷ⁺³√-√2k+1 B) (512-1/2⁻⁹)° C) ²ᴷ⁺⁴v2k+1/k²+1 D) 4k+1/1/8:7-1/56 6 / 30 ABCD kvadrat ichidan olingan O nuqtadan A, B, C uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5 ga teng bo’lsa, u holda OD kesma uzunligini toping. A) 6 B) √32 C) 3 D) √37 7 / 30 Ushbu arifmetik progressiyaning manfiy hadlari yig’indisini toping. A) -0,25 B) -1 C) -0,5 D) -0,75 8 / 30 Anvar tub son o’yladi va o’ylagan sonini 5 ga ko’paytirib, 8 ni ayirgan edi, yana tub son hosil bo’ldi. Anvar qanday son o’ylagan? A) 374389 B) 412967 C) 2 D) aniqlab bo’lmaydi 9 / 30 Tenglamaning ildizlari yig’indisi va ko’paytmasining yig’indisini toping. |x+1|.|x-4|=5 A) 6 B) -6 C) 9 D) -3 10 / 30 Tomoni 12 ga teng bo`lgan teng tomonli uchburchakga ichki chizilgan aylana uzunligini toping. A) 2√3π B) 12π C) 3π D) 4√3π 11 / 30 tenglamalar sistemasini yeching A) (4;4) B) (4;–4) C) (-4;4) D) (-4;-4) 12 / 30 Hisoblang. A) 17/34 B) 2/34 C) 15/34 D) 2/17 13 / 30 Tengsizlikni yeching. A) to'g'ri javob yo'q B) (-1/³ √2 ;0) C) (0;+∞) D) 0 14 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 2000 B) 2100 C) 2200 D) 1900 15 / 30 Agar sinx+cosx=a bo’lsa, ning qiymatini toping. A) 1/2 B) 2/5 C) -1/2 D) 1/3 16 / 30 Rombning balandligi 8 ga dioganallarining ko’paytmasi 80 ga teng. Rombning perimetrini toping A) 32 B) 16 C) 20 D) 24 17 / 30 funksiya uchun quyidagi mulohazalardan qaysi biri o’rinli? A) juft funksiya B) juft ham emas, toq ham emas funksiya C) toq funksiya D) bunday funksiya mavjud emas 18 / 30 Tomoni 2 ga teng kvadratga tashqi chizilgan aylana uzunligini toping. A) 3π B) 2π/3 C) 2π D) 4π 19 / 30 Muntazam uchburchakli piramidaning yon qirrasi asos tekisligi bilan 45o li burchak tashkil etgan bo‘lsa, u holda piramidaning yon sirti yuzining uning asosi yuziga nisbatini toping. A) 3√3 B) 2√5 C) 4 D) 2√3 20 / 30 |x2-5x-14|+20≥5|x+2|+4|x-7| tengsizlikni yeching. A) (-∞;-6]v{2}v[12;∞) B) [-2;4]v{6} C) [1;6] D) [2;4]v{2}v[3;∞) 21 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 36 B) 32 C) 42 D) 38 22 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakning perimetri 48 va aylana radiusi 7 ga teng bo‘lsa, u holda kesma uzunligini toping A) 12 B) 15 C) 25 D) 30 23 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) 2√2 B) √2 C) 2 D) 4 24 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) 4sin2x*cos(2cos2x) B) -4sin2x*cos(cos2x) C) 4sin2x*cos(cos2x) D) -4sin2x*cos(2cos2x) 25 / 30 y= funksiyaning aniqlanish sohasini toping A) (-∞;0)v(2;∞) B) (-∞;0])v[2;∞) C) (0,2) D) (2;∞) 26 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) √3/2 B) √5/2 C) 1 D) 1,5 27 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 50 B) 2 yoki 50 C) 10 yoki 50 D) 10 28 / 30 Tenglamaning ildizlari yig`indisini toping. A) 6 B) 4 C) 3 D) 5 29 / 30 Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY uchburchak qanday uchburchak bo‘ladi? A) teng yonli uchburchak B) muntazam uchburchak C) to`g`ri burchakli uchburchak D) ixtiyoriy uchburchak 30 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 5√3+3/3 B) 2√2/3 C) 3√2+2/4 D) 3√3+1/5 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz