Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 148 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 10 B) 50 C) 2 yoki 50 D) 10 yoki 50 2 / 30 Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY uchburchak qanday uchburchak bo‘ladi? A) ixtiyoriy uchburchak B) teng yonli uchburchak C) to`g`ri burchakli uchburchak D) muntazam uchburchak 3 / 30 bo’lsa ni toping. Bunda funksiya f(x) ga teskari funksiya. A) -12 B) -14 C) -10 D) -4 4 / 30 Agar funksiya berilgan bo’lsa, u holda M=ning qiymatini toping. A) e⁻⁴⁹⁵⁰ B) e⁻⁵⁰⁵⁰ C) e⁴⁹⁵⁰ D) e⁵⁰⁵⁰ 5 / 30 “Tutgan balig‘ining og‘irligi qancha?” degan savolga baliqchi: “Baliqning dumi 3 kg, boshi uning dumi hamda tanasi yarmining og‘irligiga teng, tanasi esa boshi va dumining og‘irligiga teng”, deb javob berdi. Baliqning og‘irligini (kg) toping. A) 12 B) 18 C) 6 D) 3 6 / 30 sistemada xy ning qiymatini toping. A) 60 B) 64 C) 75 D) 80 7 / 30 Rombning balandligi 8 ga dioganallarining ko’paytmasi 80 ga teng. Rombning perimetrini toping A) 24 B) 32 C) 20 D) 16 8 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 2222222175 B) 222220175 C) 222222222222 D) 22222222220 9 / 30 |x2-5x-14|+20≥5|x+2|+4|x-7| tengsizlikni yeching. A) [1;6] B) [-2;4]v{6} C) [2;4]v{2}v[3;∞) D) (-∞;-6]v{2}v[12;∞) 10 / 30 Ostki asosining yuzi 32π va ustki asosining yuzi 18π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning sirtini toping. A) 56π B) 100π C) 96π D) 72π 11 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 120 B) 60 C) 47 D) 18 12 / 30 m ning qanday eng katta butun qiymatida y=2x-mx-5+m funksiyaning grafigi 1,3,4 –choraklarda yotadi? A) 5 B) 2 C) 1 D) 3 13 / 30 Soddalashtiring. A) 2018a/a+1 B) a+1 C) 2019 D) 2018 14 / 30 sistemadan x+y+z ning qiymatini toping. A) -139/41 B) 150/41 C) 139/41 D) 140/41 15 / 30 funktsiyaning aniqlanish sohasini toping. A) (-∞;1]v[2;∞) B) [1;2] C) (-∞;1)v(2;∞) D) (1;2) 16 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) √3 B) 1 C) 2 D) √2 17 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) o’tmas burchakli uchburchak B) o’tkir burchakli uchburchak C) to’gri burchakli uchburchak D) teng tomonli uchburchak 18 / 30 Teng yonli uchburchakning tomonlari 5, 5 va 6 ga teng. Bu uchburchakning bissektiritsalari va medianalari kesishgan nuqtalar A) 1 B) 1/6 C) 1/2 D) 1,2 19 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 54 B) 48√3 C) 52√3 D) 108 20 / 30 Bekzodda 50 so’m va Sobirda 70 so’m pul bor edi. Anvar Bekzodga o’z pulining 10 foizini bergandan so’ng, Bekzod Sobirga pulining yarmini berdi. So’ng Sobir Anvarga pulining 10 foizini berdi. Anvar o’zidagi pullarini hisoblab, pullari dastlabki holdagi puli bilan teng ekanligini bildi. Anvarda qancha pul bo’lgan? A) 127 B) 100 C) 375 D) 400 21 / 30 y=cos(2sinx) funksiyaning qiymatlar sohasini toping. A) [-1;1] B) [cos2;1] C) [0;1] D) [0;cos2] 22 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) 64√2π/3 B) 3√2π/4 C) (5√3+3)π/3 D) 8√2π/5 23 / 30 Agar f(x)=ax3-5x2+b va bo’lsa, a ni toping. A) 3 B) 1 C) 2 D) 0 24 / 30 x2-5|x|-6=0 tenglama ildizini toping A) -1;6 B) -1;-6 C) ±;±6 D) ±6 25 / 30 ABC muntazam uchburchak ichidan ixtiyoriy P nuqta olinib, undan BC, CA va AB tomonlarga mos ravishda PD, PE va PF perpendikulyarlar tushirilgan bo’lsa,ni toping. A) 1 B) 0,5 C) 1/√3 D) 1/√2 26 / 30 (-3;4) nuqtaga absissa, ordinata o’qlariga va koordinata boshiga nisbatan simmetrik bo’lgan nuqtalarni tutashtirishdan hosil bo’lgan uchburchakning eng kata tomonini toping. A) 10 B) 24 C) 14 D) 12 27 / 30 Ushbu funksiyaning boshlang’ich funksiyasini toping. A) ln|x-1/x+4|+c B) ln|x+4/x-1|+c C) ln(|x+4+|x-1|)+c D) ln(|x+4*|x-1|)+c 28 / 30 Quyidagi 2x-y+3z=2018 va x+5y+z=2019 tekisliklarning holatini aniqlang. A) ayqash B) o’zaro parallel C) aniqlab bo’lmaydi D) o’zaro perpendikulyar 29 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 3√2+2/4 B) 5√3+3/3 C) 2√2/3 D) 3√3+1/5 30 / 30 n ning qanday qiymatida ushbu 81 .82 .83 .….8n=51222 tenglik o’rinli bo’ladi? A) 14 B) 10 C) 12 D) 11 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz