Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 163 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 2 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Tomoni 6 ga teng bo`lgan teng tomonli uchburchakga tashqi chizilgan doiraning yuzini toping. A) 6 π B) 12π C) 10 π D) 7 π 2 / 30 Ostki asosining yuzi 32π va ustki asosining yuzi 18π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning sirtini toping. A) 56π B) 96π C) 100π D) 72π 3 / 30 Tomoni 2 ga teng kvadratga tashqi chizilgan aylana uzunligini toping. A) 3π B) 4π C) 2π/3 D) 2π 4 / 30 O’qishni bilmaydigan bola alifbening A,A,A, N,N, S- 6 ta harflarini ixtiyoriy ravishda terib chiqadi. Bunda ANANAS so’zining hosil bo’lish ehtimolini toping. A) 6/720 B) 5/24 C) 5/720 D) 1/60 5 / 30 Ushbu arifmetik progressiyaning manfiy hadlari yig’indisini toping. A) -0,25 B) -0,75 C) -1 D) -0,5 6 / 30 Quyidagilardan qaysi biri barcha lar uchun ma’noga ega (aniqlangan)? A) (512-1/2⁻⁹)° B) 4k+1/1/8:7-1/56 C) ⁴ᴷ⁺³√-√2k+1 D) ²ᴷ⁺⁴v2k+1/k²+1 7 / 30 ifodaning qiymatini toping. A) 0,5 B) -2 C) 0 D) -0,5 8 / 30 x(t)=t2+6t+5 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakat boshlangandan necha sekund o’tgach boshlang’ich nuqtaga nisbatan 77 metr masofaga siljiydi? A) 7 B) 6 C) 8 D) 10 9 / 30 funktsiyaning aniqlanish sohasini toping. A) (1;2) B) [1;2] C) (-∞;1)v(2;∞) D) (-∞;1]v[2;∞) 10 / 30 Soddalashtiring. (0<m<7) A) 2m-7 B) m C) 7-2m D) 7 11 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 13 ga, katetlaridan biri 52 ga teng. Gipotenuzaga tushirilgan balandlik uzunligini toping A) 5 B) 7 C) 4 D) 6 12 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 4 B) 3 C) 2 D) 1 13 / 30 sistema a ning qanday qiymatida cheksiz ko’p yechimga ega? A) (-∞;6) B) (-∞;6])v[6;∞) C) (2;∞) D) 6 14 / 30 Tengsizlikni yeching. A) 0 B) (-1/³ √2 ;0) C) (0;+∞) D) to'g'ri javob yo'q 15 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) (5√3+3)π/3 B) 64√2π/3 C) 8√2π/5 D) 3√2π/4 16 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 52 B) 108 C) 54 D) 48 17 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 6 B) 8 C) 5 D) 4 18 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) 4sin2x*cos(cos2x) B) -4sin2x*cos(2cos2x) C) -4sin2x*cos(cos2x) D) 4sin2x*cos(2cos2x) 19 / 30 sin2x-cos2x=1 tenglama [-π; 2π] oraliqda nechta ildizga ega? A) 10 B) 6 C) 9 D) 7 20 / 30 sistemadan x+y ning qiymatini toping. A) -12 B) 12 C) 6 D) 35/4 21 / 30 x(t)=t2+7t-6 qonuniyat bo’yicha harakatlanayotgan moddiy nuqtaning tezligi harakat boshlangandan necha sekund o’tgach 87 m/s ga teng bo’ladi? A) 50 B) 54 C) 40 D) 36 22 / 30 ABCD kvadrat ichidan olingan O nuqtadan A, B, C uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5 ga teng bo’lsa, u holda OD kesma uzunligini toping. A) √37 B) 3 C) 6 D) √32 23 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) 4 B) 2√2 C) √2 D) 2 24 / 30 sistemadan x+y+z ning qiymatini toping. A) 140/41 B) -139/41 C) 139/41 D) 150/41 25 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 10 B) 12 C) 11 D) 9 26 / 30 integralning qiymatini toping. A) 0 B) -π/2 C) π/4 D) π/2 27 / 30 Parallelogrammning tomonlari nisbati 3:5 kabi. Agar parallelogrmmning perimetri 48 ga burchaklaridan biri 1200 ga teng bo’lsa, uning yuzini toping. A) 67,5 B) 48√3 C) 135√3/4 D) 67,5√3 28 / 30 Ag ar tgα=2 bo’lsa, u holda ni hisoblang A) -10/27 B) 10/27 C) 10/3 D) -10/3 29 / 30 Tengsizlikni yeching. A) (-4;2)v(2;3) B) (-3;2)v(2;4) C) (-3;2) D) (2;4) 30 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) √2 B) 2 C) √3 D) 1 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz