Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 141 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 7 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 y= funksiyaning aniqlanish sohasini toping A) (2;∞) B) (-∞;0)v(2;∞) C) (-∞;0])v[2;∞) D) (0,2) 2 / 30 sistemadan x+y ning qiymatini toping. A) 12 B) 6 C) -12 D) 35/4 3 / 30 Agar funksiya berilgan bo’lsa, u holda M=ning qiymatini toping. A) e⁵⁰⁵⁰ B) e⁻⁴⁹⁵⁰ C) e⁻⁵⁰⁵⁰ D) e⁴⁹⁵⁰ 4 / 30 Agar sinx+cosx=a bo’lsa, ning qiymatini toping. A) 1/3 B) 2/5 C) -1/2 D) 1/2 5 / 30 Qaysi javobda faqat juft funksiyalar ko’rsatilgan? A) 2, 3 B) 1, 3 C) 1,4 D) 3, 4 6 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 120 B) 47 C) 18 D) 60 7 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 4 B) 8 C) 5 D) 6 8 / 30 |x2-5x-14|+20≥5|x+2|+4|x-7| tengsizlikni yeching. A) [1;6] B) [2;4]v{2}v[3;∞) C) [-2;4]v{6} D) (-∞;-6]v{2}v[12;∞) 9 / 30 sonning oxirgi raqamini toping. A) 6 B) 2 C) 8 D) 4 10 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakning perimetri 48 va aylana radiusi 7 ga teng bo‘lsa, u holda kesma uzunligini toping A) 30 B) 12 C) 15 D) 25 11 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusidan katta bo’lgan uchburchaklar sonini toping. A) 2019 B) 1 C) cheksiz ko’p D) 0 12 / 30 Teng yonli uchburchakning tomonlari 5, 5 va 6 ga teng. Bu uchburchakning bissektiritsalari va medianalari kesishgan nuqtalar A) 1/2 B) 1 C) 1,2 D) 1/6 13 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 22222222220 B) 222220175 C) 222222222222 D) 2222222175 14 / 30 Tomoni 6 ga teng bo`lgan teng tomonli uchburchakga tashqi chizilgan doiraning yuzini toping. A) 12π B) 7 π C) 10 π D) 6 π 15 / 30 Ushbu funksiyaning boshlang’ich funksiyasini toping. A) ln(|x+4+|x-1|)+c B) ln|x-1/x+4|+c C) ln(|x+4*|x-1|)+c D) ln|x+4/x-1|+c 16 / 30 Agar va b-a=4 bo’lsa, a+b ni toping. A) 4 B) 3,5 C) 3 D) 2 17 / 30 Rombning balandligi 8 ga dioganallarining ko’paytmasi 80 ga teng. Rombning perimetrini toping A) 32 B) 24 C) 16 D) 20 18 / 30 funksiya uchun quyidagi mulohazalardan qaysi biri o’rinli? A) juft ham emas, toq ham emas funksiya B) toq funksiya C) bunday funksiya mavjud emas D) juft funksiya 19 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 48 B) 54 C) 108 D) 52 20 / 30 x2-5|x|-6=0 tenglama ildizini toping A) -1;6 B) ±6 C) -1;-6 D) ±;±6 21 / 30 Fazoda (1;2;3) nuqtalardan o’tuvchi to’g’ri chiziq tenglamasini tuzing. A) x-1/2=y-2/3=z-3/4 B) x=y/3=z/2 C) 2x+3y+z=0 D) -x-y+z=0 22 / 30 Bog’bon uch kun davomida o’nta daraxt ko’chati o’tqazishi lozim. Agar bog’bon bir kunda eng kamida bitta ko’chat o’tqazadigan bo’lsa, u shu ishni kunlar bo’yicha necha xil usul bilan taqsimlashi mumkin? A) 25 B) 36 C) 32 D) 30 23 / 30 Bekzodda 50 so’m va Sobirda 70 so’m pul bor edi. Anvar Bekzodga o’z pulining 10 foizini bergandan so’ng, Bekzod Sobirga pulining yarmini berdi. So’ng Sobir Anvarga pulining 10 foizini berdi. Anvar o’zidagi pullarini hisoblab, pullari dastlabki holdagi puli bilan teng ekanligini bildi. Anvarda qancha pul bo’lgan? A) 400 B) 375 C) 100 D) 127 24 / 30 To’g’ri burchakli uchburchakning yuzi 24 ga, katetlaridan biri 6 ga teng bo’lsa, gipotenuzasini toping A) 12 B) √46 C) 11 D) 10 25 / 30 Parallelogrammning tomonlari nisbati 3:5 kabi. Agar parallelogrmmning perimetri 48 ga burchaklaridan biri 1200 ga teng bo’lsa, uning yuzini toping. A) 135√3/4 B) 67,5√3 C) 67,5 D) 48√3 26 / 30 Tenglamani yeching. (x+2)+(x+4)+(x+6)+…+(x+100)=2800 A) 4 B) 7 C) 3 D) 5 27 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) (5√3+3)π/3 B) 3√2π/4 C) 8√2π/5 D) 64√2π/3 28 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) 4 B) √2 C) 2 D) 2√2 29 / 30 AA1A2A3A4A5A6 muntazam oltiburchakli piramidaning hajmi ga va balandligi 2 ga teng bo‘lsa, u holda AA2A6 kesim yuzini toping. A) √5 B) 2 C) √15 D) 3 30 / 30 Agar arctga+ arctgb + arctgc= bo’lsa, a+b+c ni toping. A) abc B) ab C) 1 D) ab/c 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz