Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 164 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 A) 0 B) 2 C) 1 D) √6 2 / 30 Tomoni 12 ga teng bo`lgan teng tomonli uchburchakga ichki chizilgan aylana uzunligini toping. A) 4√3π B) 3π C) 2√3π D) 12π 3 / 30 Tengsizlikni yeching. A) (-3;2) B) (2;4) C) (-4;2)v(2;3) D) (-3;2)v(2;4) 4 / 30 Tenglamaning nechta ildizi bor? |x+1|=|2x-1| A) 1 B) 4 C) 3 D) 2 5 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) 4 B) √2 C) 2 D) 2√2 6 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping. A) 18 B) 17 C) 16 D) 14 7 / 30 Bekzodda 50 so’m va Sobirda 70 so’m pul bor edi. Anvar Bekzodga o’z pulining 10 foizini bergandan so’ng, Bekzod Sobirga pulining yarmini berdi. So’ng Sobir Anvarga pulining 10 foizini berdi. Anvar o’zidagi pullarini hisoblab, pullari dastlabki holdagi puli bilan teng ekanligini bildi. Anvarda qancha pul bo’lgan? A) 400 B) 127 C) 100 D) 375 8 / 30 Agar funksiya berilgan bo’lsa, u holda M=ning qiymatini toping. A) e⁻⁴⁹⁵⁰ B) e⁴⁹⁵⁰ C) e⁻⁵⁰⁵⁰ D) e⁵⁰⁵⁰ 9 / 30 To‘g‘ri to‘rtburchakning eni 25% ga orttirildi, bo‘yi esa 25% ga kamaytirildi. Natijada uning yuzi qanday o‘zgardi? A) 6,25% ga ortadi B) 2,5% ga ortadi C) 6,25% ga kamayadi D) o‘zgarmaydi 10 / 30 Agar bank qo’yilgan pulga 40% yillik bersa, qo’yilgan 4500 so’m pul bir yildan so’ng qancha bo’ladi? A) 6100 B) 6200 C) 6300 D) 6000 11 / 30 Fazoda (1;2;3) nuqtalardan o’tuvchi to’g’ri chiziq tenglamasini tuzing. A) x-1/2=y-2/3=z-3/4 B) x=y/3=z/2 C) 2x+3y+z=0 D) -x-y+z=0 12 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) -4sin2x*cos(2cos2x) B) 4sin2x*cos(2cos2x) C) -4sin2x*cos(cos2x) D) 4sin2x*cos(cos2x) 13 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 2222222175 B) 222222222222 C) 22222222220 D) 222220175 14 / 30 Soddalashtiring. (0<m<7) A) m B) 7 C) 2m-7 D) 7-2m 15 / 30 y=cos(2sinx) funksiyaning qiymatlar sohasini toping. A) [0;cos2] B) [cos2;1] C) [-1;1] D) [0;1] 16 / 30 sistemadan x+y ning qiymatini toping. A) 35/4 B) 6 C) 12 D) -12 17 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²/4cos²α B) πa²(1+2cosα/4sin²) C) πa²/4sin²α D) πa²(1-2sinα/4sin²) 18 / 30 ifodaning qiymatini toping. A) 0 B) 0,5 C) -2 D) -0,5 19 / 30 Agar va b-a=4 bo’lsa, a+b ni toping. A) 2 B) 4 C) 3 D) 3,5 20 / 30 a ning qanday qiymatlarida ushbu 7x-a-13=(a-5)(x+7) tenglama yagona yechimga ega A) a=12 B) a≠12 C) a ning bunday qiymati yo’q D) a≠5 21 / 30 Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY uchburchak qanday uchburchak bo‘ladi? A) to`g`ri burchakli uchburchak B) muntazam uchburchak C) teng yonli uchburchak D) ixtiyoriy uchburchak 22 / 30 Ushbu funksiyaning boshlang’ich funksiyasini toping. A) ln(|x+4*|x-1|)+c B) ln(|x+4+|x-1|)+c C) ln|x-1/x+4|+c D) ln|x+4/x-1|+c 23 / 30 Tomoni 25 ga diagonallaridan biri 4 ga teng bo’lgan rombning yuzini toping. A) 8√5 B) 32 C) 24√5 D) 16 24 / 30 integralning qiymatini toping. A) -π/2 B) 0 C) π/2 D) π/4 25 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 30° B) 90° C) 60° D) 72° 26 / 30 x(t)=t2+6t+5 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakat boshlangandan necha sekund o’tgach boshlang’ich nuqtaga nisbatan 77 metr masofaga siljiydi? A) 8 B) 10 C) 6 D) 7 27 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 108 B) 54 C) 52 D) 48 28 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 60 B) 120 C) 18 D) 47 29 / 30 Muntazam uchburchakli piramidaning yon qirrasi asos tekisligi bilan 45o li burchak tashkil etgan bo‘lsa, u holda piramidaning yon sirti yuzining uning asosi yuziga nisbatini toping. A) 2√5 B) 2√3 C) 4 D) 3√3 30 / 30 Tenglamani yeching. (x+2)+(x+4)+(x+6)+…+(x+100)=2800 A) 4 B) 3 C) 5 D) 7 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz