Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 164 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Agar f(x)=4x3-6x2-2x+3x .log3e bo’lsa, u holda ni toping. A) e B) 1 C) √2e D) 3e 2 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 222220175 B) 2222222175 C) 22222222220 D) 222222222222 3 / 30 sistema yagona yechimga ega bo’ladigan a ning barcha qiymatlari to’plamini toping. A) {2;4} B) {-1;2} C) {-1;3} D) {1;2} 4 / 30 Rombning balandligi 8 ga dioganallarining ko’paytmasi 80 ga teng. Rombning perimetrini toping A) 32 B) 24 C) 20 D) 16 5 / 30 Agar f(x)=ax3-5x2+b va bo’lsa, a ni toping. A) 1 B) 2 C) 3 D) 0 6 / 30 Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY uchburchak qanday uchburchak bo‘ladi? A) ixtiyoriy uchburchak B) teng yonli uchburchak C) muntazam uchburchak D) to`g`ri burchakli uchburchak 7 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 108 B) 48 C) 52 D) 54 8 / 30 Hisoblang: A) 1 B) -1 C) 2 D) 3 9 / 30 Ag ar tgα=2 bo’lsa, u holda ni hisoblang A) -10/3 B) -10/27 C) 10/27 D) 10/3 10 / 30 Tomoni 25 ga diagonallaridan biri 4 ga teng bo’lgan rombning yuzini toping. A) 16 B) 32 C) 8√5 D) 24√5 11 / 30 200 kishidan iborat turistlar guruxida 140 kishi ingliz tilini, 90 kishi nemis tilini va 46 kishi ikkala tilni biladi. Ikkala tilni xam bilmaydigan turistlar necha foizni tashkil qiladi. A) 8 B) 16 C) 4 D) 12 12 / 30 tenglamalar sistemasini yeching A) (4;4) B) (-4;4) C) (-4;-4) D) (4;–4) 13 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 2 B) 3 C) 4 D) 1 14 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (7; 1) B) (-7; 1) C) (4; -3) D) (-7;-1) 15 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakning perimetri 48 va aylana radiusi 7 ga teng bo‘lsa, u holda kesma uzunligini toping A) 25 B) 30 C) 12 D) 15 16 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping. A) 14 B) 16 C) 18 D) 17 17 / 30 Tengsizlik nechta butun yechimga ega? A) 1 B) 4 C) cheksiz ko’p D) 3 18 / 30 Agar funksiya berilgan bo’lsa, u holda M=ning qiymatini toping. A) e⁵⁰⁵⁰ B) e⁻⁴⁹⁵⁰ C) e⁴⁹⁵⁰ D) e⁻⁵⁰⁵⁰ 19 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 48√3 B) 52√3 C) 54 D) 108 20 / 30 y= funktsiyaning aniqlanish sohasini toping. A) (2;∞) B) [2;∞) C) (-∞;2) D) (-∞;2)v(2;∞) 21 / 30 sistemadan x+y ning qiymatini toping. A) 6 B) 35/4 C) -12 D) 12 22 / 30 AA1A2A3A4A5A6 muntazam oltiburchakli piramidaning hajmi ga va balandligi 2 ga teng bo‘lsa, u holda AA2A6 kesim yuzini toping. A) 2 B) √15 C) 3 D) √5 23 / 30 Radiusi 25 bo’lgan doirada 48 ga teng vatar o’tkazilgan. Doira markazidan shu vatargacha masofani toping. A) 7 B) 10 C) 9 D) 8 24 / 30 n ning qanday qiymatida ushbu 81 .82 .83 .….8n=51222 tenglik o’rinli bo’ladi? A) 11 B) 14 C) 12 D) 10 25 / 30 Teng yonli trpetsiyaning asoslari 15 va 25 ga balandligi esa 15 ga teng trapetsiyaning dioganalini toping A) 25 B) 30 C) 20 D) 28 26 / 30 sonning oxirgi raqamini toping. A) 4 B) 2 C) 8 D) 6 27 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) lg(ln x) B) lg(lg x) C) ln(lg x) D) ln(ln x) 28 / 30 (-3;4) nuqtaga absissa, ordinata o’qlariga va koordinata boshiga nisbatan simmetrik bo’lgan nuqtalarni tutashtirishdan hosil bo’lgan uchburchakning eng kata tomonini toping. A) 10 B) 14 C) 24 D) 12 29 / 30 y=cos(2sinx) funksiyaning qiymatlar sohasini toping. A) [-1;1] B) [cos2;1] C) [0;cos2] D) [0;1] 30 / 30 ifodaning qiymatini toping. A) -2 B) 0,5 C) 0 D) -0,5 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz