Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 160 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 2 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 m ning qanday eng katta butun qiymatida y=2x-mx-5+m funksiyaning grafigi 1,3,4 –choraklarda yotadi? A) 3 B) 1 C) 5 D) 2 2 / 30 Tengsizlikni yeching. A) (-4;2)v(2;3) B) (2;4) C) (-3;2)v(2;4) D) (-3;2) 3 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 3√2+2/4 B) 3√3+1/5 C) 5√3+3/3 D) 2√2/3 4 / 30 Rasmda ko‘rsatilgan ko‘pyoqlardan qaysi birida 4 ta yoq, 6 ta qirra bor? A) 1, 3 B) 1, 2 C) 3 D) 2 5 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 12 B) 11 C) 10 D) 9 6 / 30 Tomoni 25 ga diagonallaridan biri 4 ga teng bo’lgan rombning yuzini toping. A) 16 B) 8√5 C) 32 D) 24√5 7 / 30 sistema yagona yechimga ega bo’ladigan a ning barcha qiymatlari to’plamini toping. A) {-1;3} B) {1;2} C) {2;4} D) {-1;2} 8 / 30 sistemadan x+y+z ning qiymatini toping. A) 139/41 B) 150/41 C) 140/41 D) -139/41 9 / 30 Agar arctga+ arctgb + arctgc= bo’lsa, a+b+c ni toping. A) abc B) 1 C) ab D) ab/c 10 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²(1-2sinα/4sin²) B) πa²(1+2cosα/4sin²) C) πa²/4cos²α D) πa²/4sin²α 11 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 52 B) 48 C) 54 D) 108 12 / 30 Hisoblang: A) -1 B) 1 C) 2 D) 3 13 / 30 A) 1 B) 3 C) 2 D) 5 14 / 30 funktsiyaning aniqlanish sohasini toping. A) (-∞;1)v(2;∞) B) (1;2) C) [1;2] D) (-∞;1]v[2;∞) 15 / 30 tenglamalar sistemasini yeching A) (-4;4) B) (-4;-4) C) (4;4) D) (4;–4) 16 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 18 B) 120 C) 60 D) 47 17 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 4 B) 6 C) 5 D) 8 18 / 30 Ifodani soddalashtiring. 2 cos55o.cos40o.sin55o+cos110o.sin40o A) 1 B) 0 C) 2 D) 0,5 19 / 30 ABCD kvadrat ichidan olingan O nuqtadan A, B, C uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5 ga teng bo’lsa, u holda OD kesma uzunligini toping. A) 3 B) √32 C) √37 D) 6 20 / 30 a(x+2)=2x+1 tenglama a ning qanday qiymatida yechimga ega emas? A) (∞;∞) B) (-∞;2)v(2;∞) C) (2;∞) D) (-∞;2) 21 / 30 Hisoblang A) 1/2 B) √3/2 C) √3 D) 2 22 / 30 ABC muntazam uchburchak ichidan ixtiyoriy P nuqta olinib, undan BC, CA va AB tomonlarga mos ravishda PD, PE va PF perpendikulyarlar tushirilgan bo’lsa,ni toping. A) 0,5 B) 1 C) 1/√3 D) 1/√2 23 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping. A) 16 B) 17 C) 18 D) 14 24 / 30 Tomoni 12 ga teng bo`lgan teng tomonli uchburchakga ichki chizilgan aylana uzunligini toping. A) 4√3π B) 2√3π C) 3π D) 12π 25 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) 3√2π/4 B) 8√2π/5 C) (5√3+3)π/3 D) 64√2π/3 26 / 30 Teng yonli uchburchakning tomonlari 5, 5 va 6 ga teng. Bu uchburchakning bissektiritsalari va medianalari kesishgan nuqtalar A) 1/2 B) 1,2 C) 1 D) 1/6 27 / 30 Ag ar tgα=2 bo’lsa, u holda ni hisoblang A) -10/3 B) 10/3 C) -10/27 D) 10/27 28 / 30 Ushbu arifmetik progressiyaning manfiy hadlari yig’indisini toping. A) -0,25 B) -1 C) -0,75 D) -0,5 29 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakning perimetri 48 va aylana radiusi 7 ga teng bo‘lsa, u holda kesma uzunligini toping A) 12 B) 15 C) 30 D) 25 30 / 30 Hisoblang A) 2 B) 0 C) 1 D) -1 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz