Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 167 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Radiuslari orasidagi burchagi 36o va radiusi 5 ga teng bo`lgan sektor yoyining uzunligini toping. A) π/2 B) 2π C) π D) 2π/3 2 / 30 sistemadan x+y+z ning qiymatini toping. A) 150/41 B) -139/41 C) 139/41 D) 140/41 3 / 30 Hisoblang A) 2 B) √3 C) 1/2 D) √3/2 4 / 30 ABCD kvadrat ichidan olingan O nuqtadan A, B, C uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5 ga teng bo’lsa, u holda OD kesma uzunligini toping. A) √32 B) 3 C) 6 D) √37 5 / 30 “Tutgan balig‘ining og‘irligi qancha?” degan savolga baliqchi: “Baliqning dumi 3 kg, boshi uning dumi hamda tanasi yarmining og‘irligiga teng, tanasi esa boshi va dumining og‘irligiga teng”, deb javob berdi. Baliqning og‘irligini (kg) toping. A) 12 B) 6 C) 3 D) 18 6 / 30 Bekzodda 50 so’m va Sobirda 70 so’m pul bor edi. Anvar Bekzodga o’z pulining 10 foizini bergandan so’ng, Bekzod Sobirga pulining yarmini berdi. So’ng Sobir Anvarga pulining 10 foizini berdi. Anvar o’zidagi pullarini hisoblab, pullari dastlabki holdagi puli bilan teng ekanligini bildi. Anvarda qancha pul bo’lgan? A) 100 B) 375 C) 400 D) 127 7 / 30 integralning qiymatini toping. A) π/4 B) -π/2 C) π/2 D) 0 8 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) 3√2π/4 B) 8√2π/5 C) 64√2π/3 D) (5√3+3)π/3 9 / 30 To’rtburchakli muntazam piramidaning yon qirrasidagi ikki yoqli burchak 120 ga teng. Diagonal kesimining yuzasi S ga teng bo’lsa, uning yon sirtini toping. A) 3S B) 0,5S C) 4S D) 2S 10 / 30 Agar va b-a=4 bo’lsa, a+b ni toping. A) 3,5 B) 4 C) 3 D) 2 11 / 30 Rombning balandligi 8 ga dioganallarining ko’paytmasi 80 ga teng. Rombning perimetrini toping A) 32 B) 24 C) 20 D) 16 12 / 30 funktsiyaning aniqlanish sohasini toping. A) (-∞;1]v[2;∞) B) [1;2] C) (1;2) D) (-∞;1)v(2;∞) 13 / 30 Ifodani soddalashtiring. 2 cos55o.cos40o.sin55o+cos110o.sin40o A) 0,5 B) 1 C) 2 D) 0 14 / 30 (-3;4) nuqtaga absissa, ordinata o’qlariga va koordinata boshiga nisbatan simmetrik bo’lgan nuqtalarni tutashtirishdan hosil bo’lgan uchburchakning eng kata tomonini toping. A) 14 B) 24 C) 12 D) 10 15 / 30 O’qishni bilmaydigan bola alifbening A,A,A, N,N, S- 6 ta harflarini ixtiyoriy ravishda terib chiqadi. Bunda ANANAS so’zining hosil bo’lish ehtimolini toping. A) 1/60 B) 5/24 C) 5/720 D) 6/720 16 / 30 Quyidagi va to’g’ri chiziqlarning o’zaro holatini aniqlang. A) o’zaro perpendikulyar B) ayqash to’gri chiziqlar C) o’zaro parallel D) o’zaro kesishadi 17 / 30 To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar bo’lsa, Q uchining koordinatalarini toping. A) (-7;-1) B) (7; 1) C) (-7; 1) D) (4; -3) 18 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 3√3+1/5 B) 2√2/3 C) 3√2+2/4 D) 5√3+3/3 19 / 30 Teng yonli uchburchakning tomonlari 5, 5 va 6 ga teng. Bu uchburchakning bissektiritsalari va medianalari kesishgan nuqtalar A) 1 B) 1/6 C) 1,2 D) 1/2 20 / 30 Tenglamaning nechta ildizi bor? |x+1|=|2x-1| A) 3 B) 1 C) 4 D) 2 21 / 30 Tenglamani yeching. (x+2)+(x+4)+(x+6)+…+(x+100)=2800 A) 4 B) 3 C) 5 D) 7 22 / 30 Sin9x =4sin3x tenglamani yeching A) πn, n€Ζ B) π/2+πn, n€Ζ C) π/3+πn, n€Ζ D) πn/3, n€Ζ 23 / 30 Ushbu funksiyaning boshlang’ich funksiyasini toping. A) ln|x+4/x-1|+c B) ln|x-1/x+4|+c C) ln(|x+4+|x-1|)+c D) ln(|x+4*|x-1|)+c 24 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 4 B) 3 C) 2 D) 1 25 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) √2 B) 2 C) 2√2 D) 4 26 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 60 B) 120 C) 47 D) 18 27 / 30 Parallelogrammning tomonlari nisbati 3:5 kabi. Agar parallelogrmmning perimetri 48 ga burchaklaridan biri 1200 ga teng bo’lsa, uning yuzini toping. A) 67,5√3 B) 48√3 C) 67,5 D) 135√3/4 28 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping. A) 14 B) 16 C) 18 D) 17 29 / 30 Quyidagi 2x-y+3z=2018 va x+5y+z=2019 tekisliklarning holatini aniqlang. A) o’zaro parallel B) o’zaro perpendikulyar C) aniqlab bo’lmaydi D) ayqash 30 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 48 B) 52 C) 108 D) 54 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz