Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 127 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 3 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Tengsizlikni yeching. A) (2;4) B) (-4;2)v(2;3) C) (-3;2)v(2;4) D) (-3;2) 2 / 30 bo’lsa ni toping. Bunda funksiya f(x) ga teskari funksiya. A) -14 B) -12 C) -4 D) -10 3 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) 1 B) √3 C) 2 D) √2 4 / 30 Radiuslari orasidagi burchagi 36o va radiusi 5 ga teng bo`lgan sektor yoyining uzunligini toping. A) π B) π/2 C) 2π/3 D) 2π 5 / 30 Tomoni 25 ga diagonallaridan biri 4 ga teng bo’lgan rombning yuzini toping. A) 24√5 B) 32 C) 16 D) 8√5 6 / 30 Tenglamani yeching. |x2-11x+10|=x2-11x+10 A) (-∞;1] B) (-∞;1]v[10;∞) C) 1; 10 D) [10;∞) 7 / 30 (-3;4) nuqtaga absissa, ordinata o’qlariga va koordinata boshiga nisbatan simmetrik bo’lgan nuqtalarni tutashtirishdan hosil bo’lgan uchburchakning eng kata tomonini toping. A) 10 B) 14 C) 12 D) 24 8 / 30 Tenglamaning ildizlari yig’indisi va ko’paytmasining yig’indisini toping. |x+1|.|x-4|=5 A) -6 B) 6 C) 9 D) -3 9 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 1; 2; 1,5; 1,2 ga teng bo’ladigan barcha to’g’ri to’rtburchaklar sonini toping A) 2 B) 1 C) cheksiz ko’p D) 0 10 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) -4sin2x*cos(cos2x) B) -4sin2x*cos(2cos2x) C) 4sin2x*cos(cos2x) D) 4sin2x*cos(2cos2x) 11 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 52√3 B) 48√3 C) 108 D) 54 12 / 30 Soddalashtiring. (0<m<7) A) 2m-7 B) 7 C) 7-2m D) m 13 / 30 A) 2 B) 1 C) 5 D) 3 14 / 30 Bog’bon uch kun davomida o’nta daraxt ko’chati o’tqazishi lozim. Agar bog’bon bir kunda eng kamida bitta ko’chat o’tqazadigan bo’lsa, u shu ishni kunlar bo’yicha necha xil usul bilan taqsimlashi mumkin? A) 32 B) 36 C) 25 D) 30 15 / 30 To‘g‘ri to‘rtburchakning eni 25% ga orttirildi, bo‘yi esa 25% ga kamaytirildi. Natijada uning yuzi qanday o‘zgardi? A) 2,5% ga ortadi B) 6,25% ga ortadi C) o‘zgarmaydi D) 6,25% ga kamayadi 16 / 30 funktsiyaning aniqlanish sohasini toping. A) (1;2) B) [1;2] C) (-∞;1]v[2;∞) D) (-∞;1)v(2;∞) 17 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4716 B) 4760 C) 4680 D) 4720 18 / 30 Agar va b-a=4 bo’lsa, a+b ni toping. A) 3 B) 2 C) 4 D) 3,5 19 / 30 Tengsizlikni yeching. A) (-1/³ √2 ;0) B) 0 C) (0;+∞) D) to'g'ri javob yo'q 20 / 30 To’g’ri burchakli uchburchakning yuzi 24 ga, katetlaridan biri 6 ga teng bo’lsa, gipotenuzasini toping A) 10 B) √46 C) 11 D) 12 21 / 30 sonning oxirgi raqamini toping. A) 4 B) 2 C) 8 D) 6 22 / 30 Parallelogrammning tomonlari nisbati 3:5 kabi. Agar parallelogrmmning perimetri 48 ga burchaklaridan biri 1200 ga teng bo’lsa, uning yuzini toping. A) 67,5 B) 135√3/4 C) 48√3 D) 67,5√3 23 / 30 To’g’ri to’rtburchakning perimetri 50 ga teng. Bir tomoni boshqa tomonidan 5 ga ko’p. To’g’ri to’rtburchakning yuzini toping. A) 60 B) 50 C) 225 D) 150 24 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakning perimetri 48 va aylana radiusi 7 ga teng bo‘lsa, u holda kesma uzunligini toping A) 25 B) 15 C) 12 D) 30 25 / 30 a(x+2)=2x+1 tenglama a ning qanday qiymatida yechimga ega emas? A) (-∞;2) B) (-∞;2)v(2;∞) C) (∞;∞) D) (2;∞) 26 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 54 B) 48 C) 52 D) 108 27 / 30 sin2x-cos2x=1 tenglama [-π; 2π] oraliqda nechta ildizga ega? A) 7 B) 10 C) 6 D) 9 28 / 30 y=cos(2sinx) funksiyaning qiymatlar sohasini toping. A) [cos2;1] B) [0;cos2] C) [-1;1] D) [0;1] 29 / 30 tenglamalar sistemasini yeching A) (-4;-4) B) (4;–4) C) (4;4) D) (-4;4) 30 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 1900 B) 2100 C) 2200 D) 2000 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz