Matematika abituriyent testi №1

4
Tomonidan yaratilgan InfoMaster

Matematika abituriyentlar uchun №1

1 / 30

ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 1; 2; 1,5; 1,2 ga teng bo’ladigan barcha to’g’ri to’rtburchaklar sonini toping

2 / 30

x(t)=t2+7t-6 qonuniyat bo’yicha harakatlanayotgan moddiy nuqtaning tezligi harakat boshlangandan necha sekund o’tgach 87 m/s ga teng bo’ladi?

3 / 30

Agar arctga+ arctgb + arctgc=  bo’lsa, a+b+c ni toping.

4 / 30

Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ?

5 / 30

To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping.

6 / 30

To’g’ri burchakli uchburchakning gipotenuzasi 13 ga, katetlaridan biri 52  ga teng. Gipotenuzaga tushirilgan balandlik uzunligini toping

7 / 30

Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping.

8 / 30

To‘g‘ri to‘rtburchakning eni 25% ga orttirildi, bo‘yi esa 25% ga kamaytirildi. Natijada uning yuzi qanday o‘zgardi?

9 / 30

Soddalashtiring. (0<m<7)

10 / 30

Arifmetik progressiyada a17=33  va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping.

11 / 30

Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusidan katta bo’lgan uchburchaklar sonini toping.

 

12 / 30

Markazi O nuqtada bo‘lgan aylanaga PA va PB urinmalar o‘tkazilgan bo’lib, A va  B nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma PA va PB kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar XQ=YQ bo‘lsa, u holda PXY  uchburchak qanday uchburchak bo‘ladi?

13 / 30

y=cos(2sinx) funksiyaning qiymatlar sohasini toping.

14 / 30

To’rtburchakning uchi M (0, 4) ; N(-4,0) ; P(-3;2) uchlari berilgan. Agar  bo’lsa, Q uchining koordinatalarini toping.

15 / 30

200 kishidan iborat turistlar guruxida 140 kishi ingliz tilini, 90 kishi nemis tilini va 46 kishi ikkala tilni biladi. Ikkala tilni xam bilmaydigan turistlar necha foizni tashkil qiladi.

16 / 30

Tenglamaning ildizlari yig’indisi va ko’paytmasining yig’indisini toping. |x+1|.|x-4|=5

17 / 30

To’g’ri burchakli uchburchakning yuzi 24 ga, katetlaridan biri 6 ga teng bo’lsa, gipotenuzasini toping

18 / 30

To’rtburchakli muntazam piramidaning yon qirrasidagi ikki yoqli burchak 120  ga teng. Diagonal kesimining yuzasi S ga teng bo’lsa, uning yon sirtini toping.

19 / 30

sistemada xy ning qiymatini toping.

20 / 30

 tenglamalar sistemasini yeching

21 / 30

Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi?

22 / 30

“Tutgan balig‘ining og‘irligi qancha?” degan savolga baliqchi: “Baliqning dumi 3 kg, boshi uning dumi hamda tanasi yarmining og‘irligiga teng, tanasi esa boshi va dumining og‘irligiga teng”, deb javob berdi. Baliqning og‘irligini (kg) toping.

23 / 30

O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak  ga teng. Agar o’q kesimining diagonali  ga teng bo’lsa, kesik konus asosining yuzini toping.

 

24 / 30

Fazoda (1;2;3) nuqtalardan o’tuvchi to’g’ri chiziq tenglamasini tuzing.

25 / 30

Radiuslari orasidagi burchagi 36o va radiusi 5 ga teng bo`lgan sektor yoyining uzunligini toping.

26 / 30

Ifodani soddalashtiring.

2 cos55o.cos40o.sin55o+cos110o.sin40o

27 / 30

ABC muntazam uchburchak ichidan ixtiyoriy P nuqta olinib, undan BC, CA va AB tomonlarga mos ravishda PD, PE va PF perpendikulyarlar tushirilgan bo’lsa,ni toping.

28 / 30

Parallelogrammning tomonlari nisbati 3:5 kabi. Agar parallelogrmmning perimetri 48 ga burchaklaridan biri 1200 ga teng bo’lsa, uning yuzini toping.

29 / 30

Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping.

30 / 30

Bir vaqtning o’zida 9,13, . . . ,405 va 15,21, . . . ,255 ketma–ketliklarning hadlari bo’lgan sonlarning eng kattasi va eng kichigining ayirmasini toping

0%

Baholash mezoni

To'g'ri javob uchun 3,1 ball.

InfoMaster
Author: InfoMaster

Foydali bo'lsa mamnunmiz

1 Izoh

Javob qoldiring

Info-Master.uz
Logo
Elementlarni Solishtiring
  • Jami (0)
Solishtiring
0