Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 153 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 5 ga, bir katetining gipotenuzadagi proyeksiyasi 1,6 ga teng. Ikkinchi katetning kvadratini toping. A) 14 B) 18 C) 17 D) 16 2 / 30 Hisoblang A) 2 B) √3/2 C) 1/2 D) √3 3 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakning perimetri 48 va aylana radiusi 7 ga teng bo‘lsa, u holda kesma uzunligini toping A) 12 B) 25 C) 15 D) 30 4 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4720 B) 4680 C) 4716 D) 4760 5 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 13 ga, katetlaridan biri 52 ga teng. Gipotenuzaga tushirilgan balandlik uzunligini toping A) 4 B) 5 C) 6 D) 7 6 / 30 a ning qanday qiymatlarida ushbu 7x-a-13=(a-5)(x+7) tenglama yagona yechimga ega A) a≠5 B) a ning bunday qiymati yo’q C) a=12 D) a≠12 7 / 30 x(t)=t2+7t-6 qonuniyat bo’yicha harakatlanayotgan moddiy nuqtaning tezligi harakat boshlangandan necha sekund o’tgach 87 m/s ga teng bo’ladi? A) 54 B) 36 C) 50 D) 40 8 / 30 Agar funksiya berilgan bo’lsa, u holda M=ning qiymatini toping. A) e⁻⁴⁹⁵⁰ B) e⁴⁹⁵⁰ C) e⁻⁵⁰⁵⁰ D) e⁵⁰⁵⁰ 9 / 30 sin2x-cos2x=1 tenglama [-π; 2π] oraliqda nechta ildizga ega? A) 6 B) 10 C) 7 D) 9 10 / 30 Qaysi javobda faqat juft funksiyalar ko’rsatilgan? A) 3, 4 B) 1,4 C) 2, 3 D) 1, 3 11 / 30 x2-5|x|-6=0 tenglama ildizini toping A) -1;-6 B) ±6 C) -1;6 D) ±;±6 12 / 30 tenglamani yeching. A) 2019 B) 2017 C) 0 D) 2018 13 / 30 Ifodani soddalashtiring. [ln(ln x)-ln(loge10)].log10e A) lg(lg x) B) ln(ln x) C) ln(lg x) D) lg(ln x) 14 / 30 Bir vaqtning o’zida 9,13, . . . ,405 va 15,21, . . . ,255 ketma–ketliklarning hadlari bo’lgan sonlarning eng kattasi va eng kichigining ayirmasini toping A) 228 B) 147 C) 150 D) 231 15 / 30 To’rtburchakli muntazam piramidaning yon qirrasidagi ikki yoqli burchak 120 ga teng. Diagonal kesimining yuzasi S ga teng bo’lsa, uning yon sirtini toping. A) 4S B) 3S C) 2S D) 0,5S 16 / 30 Ushbu funksiyaning boshlang’ich funksiyasini toping. A) ln|x-1/x+4|+c B) ln(|x+4*|x-1|)+c C) ln|x+4/x-1|+c D) ln(|x+4+|x-1|)+c 17 / 30 bo’lsa ni toping. Bunda funksiya f(x) ga teskari funksiya. A) -4 B) -10 C) -14 D) -12 18 / 30 200 kishidan iborat turistlar guruxida 140 kishi ingliz tilini, 90 kishi nemis tilini va 46 kishi ikkala tilni biladi. Ikkala tilni xam bilmaydigan turistlar necha foizni tashkil qiladi. A) 8 B) 4 C) 16 D) 12 19 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 120 B) 18 C) 47 D) 60 20 / 30 Tengsizlikni yeching. A) to'g'ri javob yo'q B) (-1/³ √2 ;0) C) 0 D) (0;+∞) 21 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) 8√2π/5 B) (5√3+3)π/3 C) 3√2π/4 D) 64√2π/3 22 / 30 Quyidagi va to’g’ri chiziqlarning o’zaro holatini aniqlang. A) o’zaro parallel B) o’zaro perpendikulyar C) o’zaro kesishadi D) ayqash to’gri chiziqlar 23 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 8 B) 4 C) 5 D) 6 24 / 30 tenglamalar sistemasini yeching A) (-4;4) B) (4;–4) C) (4;4) D) (-4;-4) 25 / 30 Hisoblang A) 1 B) 0 C) -1 D) 2 26 / 30 Agar f(x)=4x3-6x2-2x+3x .log3e bo’lsa, u holda ni toping. A) √2e B) e C) 3e D) 1 27 / 30 Tenglamani yeching. (x+2)+(x+4)+(x+6)+…+(x+100)=2800 A) 4 B) 5 C) 3 D) 7 28 / 30 Bekzodda 50 so’m va Sobirda 70 so’m pul bor edi. Anvar Bekzodga o’z pulining 10 foizini bergandan so’ng, Bekzod Sobirga pulining yarmini berdi. So’ng Sobir Anvarga pulining 10 foizini berdi. Anvar o’zidagi pullarini hisoblab, pullari dastlabki holdagi puli bilan teng ekanligini bildi. Anvarda qancha pul bo’lgan? A) 375 B) 127 C) 100 D) 400 29 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 108 B) 48 C) 52 D) 54 30 / 30 7 sonini uchta natural sonlar yig’indisi ko’rinishida necha xil usulda yozish mumkin? A) 5 B) 6 C) 3 D) 4 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz