Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 148 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 2222222175 B) 222222222222 C) 222220175 D) 22222222220 2 / 30 Yuzasi 10 ga teng bo’lgan kvadratning ketma-ket ikki uchidan o’tuvchi aylana chizilgan. Uchinchi uchidan aylanaga urunma o’tkazilgan. Urunma tomondan ikki marta katta bo’lsa, aylana radiusini toping. A) 4 B) 5 C) 6 D) 10 3 / 30 bo’lsa, ni x orqali ifodalang. A) 2-x B) 2/x C) 25/x D) x/25 4 / 30 Ag ar tgα=2 bo’lsa, u holda ni hisoblang A) -10/3 B) 10/3 C) -10/27 D) 10/27 5 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 120 B) 18 C) 47 D) 60 6 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 2 B) 1 C) 4 D) 3 7 / 30 Tenglamani yeching. |x2-11x+10|=x2-11x+10 A) (-∞;1] B) 1; 10 C) [10;∞) D) (-∞;1]v[10;∞) 8 / 30 A) 5 B) 1 C) 3 D) 2 9 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) 4sin2x*cos(cos2x) B) -4sin2x*cos(2cos2x) C) 4sin2x*cos(2cos2x) D) -4sin2x*cos(cos2x) 10 / 30 7 sonini uchta natural sonlar yig’indisi ko’rinishida necha xil usulda yozish mumkin? A) 3 B) 5 C) 4 D) 6 11 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4680 B) 4760 C) 4720 D) 4716 12 / 30 funktsiyaning aniqlanish sohasini toping. A) (-∞;1]v[2;∞) B) (-∞;1)v(2;∞) C) [1;2] D) (1;2) 13 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 12 B) 10 C) 9 D) 11 14 / 30 To’g’ri burchakli uchburchakning yuzi 24 ga, katetlaridan biri 6 ga teng bo’lsa, gipotenuzasini toping A) 11 B) 12 C) 10 D) √46 15 / 30 a ning 7x-a-13=(a-5)(x+7) tenglama yechimga ega bo’lmaydigan qiymatining natural bo’luvchilar sonini toping. A) 8 B) 6 C) 12 D) 4 16 / 30 sin2x-cos2x=1 tenglama [-π; 2π] oraliqda nechta ildizga ega? A) 9 B) 10 C) 6 D) 7 17 / 30 Hisoblang A) 1 B) 2 C) 0 D) -1 18 / 30 Hisoblang A) √3 B) √3/2 C) 1/2 D) 2 19 / 30 ifodaning qiymatini toping. A) -2 B) -0,5 C) 0 D) 0,5 20 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakning perimetri 48 va aylana radiusi 7 ga teng bo‘lsa, u holda kesma uzunligini toping A) 25 B) 30 C) 15 D) 12 21 / 30 x2-5|x|-6=0 tenglama ildizini toping A) ±;±6 B) -1;-6 C) ±6 D) -1;6 22 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) to’gri burchakli uchburchak B) teng tomonli uchburchak C) o’tmas burchakli uchburchak D) o’tkir burchakli uchburchak 23 / 30 Soddalashtiring. (0<m<7) A) 7-2m B) m C) 2m-7 D) 7 24 / 30 Tengsizlikni yeching. A) (-3;2) B) (-3;2)v(2;4) C) (-4;2)v(2;3) D) (2;4) 25 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²(1+2cosα/4sin²) B) πa²/4sin²α C) πa²(1-2sinα/4sin²) D) πa²/4cos²α 26 / 30 Bankda qo`yilgan pul bir yildan kegin foydasi bilan 2600 so`m bo`ldi; Agar bank yillik 30% foyda to`lasa, boshida qancha pul qo`yilgan bo`ladi ? A) 2100 B) 1900 C) 2200 D) 2000 27 / 30 sistemada xy ning qiymatini toping. A) 80 B) 60 C) 64 D) 75 28 / 30 Teng yonli trpetsiyaning asoslari 15 va 25 ga balandligi esa 15 ga teng trapetsiyaning dioganalini toping A) 25 B) 20 C) 28 D) 30 29 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakka ichki chizilgan aylana markazi bo‘lsa, u holda burchakni toping. A) 60° B) 30° C) 72° D) 90° 30 / 30 Tomoni 25 ga diagonallaridan biri 4 ga teng bo’lgan rombning yuzini toping. A) 8√5 B) 24√5 C) 16 D) 32 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz