Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 153 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 sistema a ning qanday qiymatida cheksiz ko’p yechimga ega? A) 6 B) (-∞;6) C) (-∞;6])v[6;∞) D) (2;∞) 2 / 30 Radiuslari orasidagi burchagi 36o va radiusi 5 ga teng bo`lgan sektor yoyining uzunligini toping. A) π B) 2π/3 C) 2π D) π/2 3 / 30 (-3;4) nuqtaga absissa, ordinata o’qlariga va koordinata boshiga nisbatan simmetrik bo’lgan nuqtalarni tutashtirishdan hosil bo’lgan uchburchakning eng kata tomonini toping. A) 10 B) 12 C) 14 D) 24 4 / 30 Soat 3:37 bo’lganda minut va soat millari orasidagi burchakni toping. A) 100° B) 113° C) 112,5° D) 113,5° 5 / 30 a=sin 1; b=sin 2; c=sin 3; d=sin 4 va e=sin 5 sonlarni kamayish tartibida joylashtiring. A) b>a>c>d>e B) b>c>a>d>e C) a>b>c>d>e D) e>b>a>d>c 6 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 3, 4, 5, 6 ga teng bo’lsa, u holda AB tomon uzunligini toping. A) √7 B) 2 C) √37 D) bunday to’gri to’rtburchak mavjud emas 7 / 30 Quyidagilardan qaysi biri barcha lar uchun ma’noga ega (aniqlangan)? A) 4k+1/1/8:7-1/56 B) (512-1/2⁻⁹)° C) ⁴ᴷ⁺³√-√2k+1 D) ²ᴷ⁺⁴v2k+1/k²+1 8 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusidan katta bo’lgan uchburchaklar sonini toping. A) 0 B) 2019 C) cheksiz ko’p D) 1 9 / 30 bo’lsa ni toping. Bunda funksiya f(x) ga teskari funksiya. A) -4 B) -10 C) -14 D) -12 10 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 3√3+1/5 B) 5√3+3/3 C) 2√2/3 D) 3√2+2/4 11 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 42 B) 38 C) 32 D) 36 12 / 30 Tengsizlikni yeching. A) (-3;2)v(2;4) B) (-3;2) C) (-4;2)v(2;3) D) (2;4) 13 / 30 Agar funksiya berilgan bo’lsa, u holda M=ning qiymatini toping. A) e⁻⁴⁹⁵⁰ B) e⁻⁵⁰⁵⁰ C) e⁴⁹⁵⁰ D) e⁵⁰⁵⁰ 14 / 30 a ning 7x-a-13=(a-5)(x+7) tenglama yechimga ega bo’lmaydigan qiymatining natural bo’luvchilar sonini toping. A) 12 B) 8 C) 4 D) 6 15 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) 3√2π/4 B) (5√3+3)π/3 C) 8√2π/5 D) 64√2π/3 16 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) √5/2 B) 1,5 C) √3/2 D) 1 17 / 30 Bekzodda 50 so’m va Sobirda 70 so’m pul bor edi. Anvar Bekzodga o’z pulining 10 foizini bergandan so’ng, Bekzod Sobirga pulining yarmini berdi. So’ng Sobir Anvarga pulining 10 foizini berdi. Anvar o’zidagi pullarini hisoblab, pullari dastlabki holdagi puli bilan teng ekanligini bildi. Anvarda qancha pul bo’lgan? A) 127 B) 400 C) 375 D) 100 18 / 30 To’rtburchakli muntazam piramidaning yon qirrasidagi ikki yoqli burchak 120 ga teng. Diagonal kesimining yuzasi S ga teng bo’lsa, uning yon sirtini toping. A) 3S B) 0,5S C) 2S D) 4S 19 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 10 B) 2 yoki 50 C) 50 D) 10 yoki 50 20 / 30 funksiya uchun quyidagi mulohazalardan qaysi biri o’rinli? A) juft funksiya B) bunday funksiya mavjud emas C) toq funksiya D) juft ham emas, toq ham emas funksiya 21 / 30 integralning qiymatini toping. A) 0 B) -π/2 C) π/2 D) π/4 22 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 47 B) 60 C) 120 D) 18 23 / 30 Tomoni 12 ga teng bo`lgan teng tomonli uchburchakga ichki chizilgan aylana uzunligini toping. A) 4√3π B) 2√3π C) 3π D) 12π 24 / 30 Agar f(x)=sin2x va g(x)=cos2x bo’lsa, u holda f(g(x)) funksiyaning hosilasini toping. A) -4sin2x*cos(cos2x) B) -4sin2x*cos(2cos2x) C) 4sin2x*cos(cos2x) D) 4sin2x*cos(2cos2x) 25 / 30 To’g’ri burchakli uchburchakning yuzi 24 ga, katetlaridan biri 6 ga teng bo’lsa, gipotenuzasini toping A) √46 B) 11 C) 10 D) 12 26 / 30 Ushbu funksiyaning boshlang’ich funksiyasini toping. A) ln(|x+4+|x-1|)+c B) ln(|x+4*|x-1|)+c C) ln|x+4/x-1|+c D) ln|x-1/x+4|+c 27 / 30 Hisoblang A) -1 B) 1 C) 0 D) 2 28 / 30 Tenglamaning nechta ildizi bor? |x+1|=|2x-1| A) 3 B) 2 C) 4 D) 1 29 / 30 Markazi nuqtada bo‘lgan aylanaga va urinmalar o‘tkazilgan bo’lib, va nuqtalar urinish nuqtalari bo’lsin. Aylanadagi Q nuqtadan o‘tkazilgan uchinchi urinma va kesmalarni X va Y nuqtalarda kesib o‘tadi. Agar uchburchakning perimetri 48 va aylana radiusi 7 ga teng bo‘lsa, u holda kesma uzunligini toping A) 12 B) 15 C) 25 D) 30 30 / 30 Agar bank qo`yilgan pulga 40% yillik foyda bersa, qo`yilgan 5000 so`m pul bir yildan keyin qancha bo`ladi ? A) 6900 B) 7200 C) 7000 D) 6200 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz