Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 163 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 2 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 A) 2 B) 1 C) √6 D) 0 2 / 30 tenglamalar sistemasini yeching A) (–4;3) B) (4;3) C) (3;–4) D) (4;–3) 3 / 30 bo’lsa, ni x orqali ifodalang. A) 2-x B) 2/x C) 25/x D) x/25 4 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²/4cos²α B) πa²/4sin²α C) πa²(1-2sinα/4sin²) D) πa²(1+2cosα/4sin²) 5 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 2π/3 B) 3π/4 C) 4π/3 D) 3π/2 6 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) o’tmas burchakli uchburchak B) o’tkir burchakli uchburchak C) to’gri burchakli uchburchak D) teng tomonli uchburchak 7 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 3√3+1/5 B) 2√2/3 C) 3√2+2/4 D) 5√3+3/3 8 / 30 Soat 3:37 bo’lganda minut va soat millari orasidagi burchakni toping. A) 113° B) 113,5° C) 112,5° D) 100° 9 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 60 B) 120 C) 18 D) 47 10 / 30 Rombning yuzi 96 ga, dioganallaridan biri 16 ga teng. Romb tomonini toping. A) 9 B) 11 C) 10 D) 12 11 / 30 Hisoblang: A) 1 B) 2 C) 3 D) -1 12 / 30 Teng yonli trpetsiyaning asoslari 15 va 25 ga balandligi esa 15 ga teng trapetsiyaning dioganalini toping A) 28 B) 20 C) 30 D) 25 13 / 30 Hisoblang A) 3√3 B) 1 C) 2√3 D) √3 14 / 30 Hisoblang. 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 A) 222222222222 B) 222220175 C) 2222222175 D) 22222222220 15 / 30 To’g’ri burchakli uchburchakning gipotenuzasi 13 ga, katetlaridan biri 52 ga teng. Gipotenuzaga tushirilgan balandlik uzunligini toping A) 7 B) 6 C) 4 D) 5 16 / 30 y= funksiyaning aniqlanish sohasini toping A) (2;∞) B) (0,2) C) (-∞;0])v[2;∞) D) (-∞;0)v(2;∞) 17 / 30 Teng yonli uchburchakning tomonlari 5, 5 va 6 ga teng. Bu uchburchakning bissektiritsalari va medianalari kesishgan nuqtalar A) 1/2 B) 1 C) 1/6 D) 1,2 18 / 30 To‘g‘ri to‘rtburchakning eni 25% ga orttirildi, bo‘yi esa 25% ga kamaytirildi. Natijada uning yuzi qanday o‘zgardi? A) 6,25% ga ortadi B) o‘zgarmaydi C) 6,25% ga kamayadi D) 2,5% ga ortadi 19 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 36 B) 32 C) 42 D) 38 20 / 30 a ning qanday qiymatlarida ushbu 7x-a-13=(a-5)(x+7) tenglama yagona yechimga ega A) a ning bunday qiymati yo’q B) a≠12 C) a=12 D) a≠5 21 / 30 Agar bank qo’yilgan pulga 40% yillik bersa, qo’yilgan 4500 so’m pul bir yildan so’ng qancha bo’ladi? A) 6100 B) 6000 C) 6300 D) 6200 22 / 30 Parallelogrammning yuzi 213 ga, tomonlaridan biri 7 ga va o’tkir burchagi 600 ga teng bo’lsa, ikkinchi tomonini toping A) 8 B) 5 C) 4 D) 6 23 / 30 Hisoblang A) √3/2 B) 1/2 C) 2 D) √3 24 / 30 Agar arctga+ arctgb + arctgc= bo’lsa, a+b+c ni toping. A) 1 B) ab C) abc D) ab/c 25 / 30 Quyidagi 2x-y+3z=2018 va x+5y+z=2019 tekisliklarning holatini aniqlang. A) o’zaro perpendikulyar B) aniqlab bo’lmaydi C) o’zaro parallel D) ayqash 26 / 30 Agar funksiya berilgan bo’lsa, u holda M=ning qiymatini toping. A) e⁴⁹⁵⁰ B) e⁵⁰⁵⁰ C) e⁻⁵⁰⁵⁰ D) e⁻⁴⁹⁵⁰ 27 / 30 ABCD to’gri to’rtburchak ichidan olingan O nuqtadan A, B, C, D uchlarigacha bo’lgan masofalar mos ravishda 1; 2; 1,5; 1,2 ga teng bo’ladigan barcha to’g’ri to’rtburchaklar sonini toping A) cheksiz ko’p B) 2 C) 0 D) 1 28 / 30 Ushbu arifmetik progressiyaning manfiy hadlari yig’indisini toping. A) -1 B) -0,5 C) -0,25 D) -0,75 29 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) 64√2π/3 B) (5√3+3)π/3 C) 8√2π/5 D) 3√2π/4 30 / 30 A(2;-2,5) nuqtadan y= - 4x parabolagacha bo’lgan eng qisqa masofani toping. A) √5/2 B) 1,5 C) 1 D) √3/2 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz