Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 168 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 0 Vaqtingiz tugadi! Tomonidan yaratilgan InfoMaster Matematika abituriyentlar uchun №1 1 / 30 bo’lsa, ni x orqali ifodalang. A) x/25 B) 2/x C) 25/x D) 2-x 2 / 30 Quyidagi 2x-y+3z=2018 va x+5y+z=2019 tekisliklarning holatini aniqlang. A) o’zaro perpendikulyar B) o’zaro parallel C) aniqlab bo’lmaydi D) ayqash 3 / 30 sin2x-cos2x=1 tenglama [-π; 2π] oraliqda nechta ildizga ega? A) 10 B) 9 C) 6 D) 7 4 / 30 Musobaqada 5 ta ishtirokchidan 3 tasiga 1, 2, 3-o’rinlarni necha xil usulda berish mumkin? A) 60 B) 18 C) 47 D) 120 5 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 3√3+1/5 B) 3√2+2/4 C) 2√2/3 D) 5√3+3/3 6 / 30 bo’lsa ni toping. Bunda funksiya f(x) ga teskari funksiya. A) -4 B) -10 C) -12 D) -14 7 / 30 O’qishni bilmaydigan bola alifbening A,A,A, N,N, S- 6 ta harflarini ixtiyoriy ravishda terib chiqadi. Bunda ANANAS so’zining hosil bo’lish ehtimolini toping. A) 6/720 B) 5/720 C) 5/24 D) 1/60 8 / 30 sistema a ning qanday qiymatida cheksiz ko’p yechimga ega? A) (2;∞) B) (-∞;6])v[6;∞) C) 6 D) (-∞;6) 9 / 30 y= funktsiyaning aniqlanish sohasini toping. A) (-∞;2)v(2;∞) B) [2;∞) C) (2;∞) D) (-∞;2) 10 / 30 Konsert zalining birinchi qatorida 40 ta o’rindiq bor. Har bir keyingi qatordagi o’rindiqlar soni oldingi qatordan 4 ga ko’p. Agar konsert zalida jami 40 ta qator bo’lsa, u holda shu zaldagi barcha o’rindiqlar sonini toping. A) 4716 B) 4680 C) 4760 D) 4720 11 / 30 Hisoblang A) 2√3 B) 1 C) 3√3 D) √3 12 / 30 Yuzasi 10 ga teng bo’lgan kvadratning ketma-ket ikki uchidan o’tuvchi aylana chizilgan. Uchinchi uchidan aylanaga urunma o’tkazilgan. Urunma tomondan ikki marta katta bo’lsa, aylana radiusini toping. A) 4 B) 10 C) 6 D) 5 13 / 30 200 kishidan iborat turistlar guruxida 140 kishi ingliz tilini, 90 kishi nemis tilini va 46 kishi ikkala tilni biladi. Ikkala tilni xam bilmaydigan turistlar necha foizni tashkil qiladi. A) 12 B) 4 C) 16 D) 8 14 / 30 To’g’ri to’rtburchakning perimetri 50 ga teng. Bir tomoni boshqa tomonidan 5 ga ko’p. To’g’ri to’rtburchakning yuzini toping. A) 60 B) 50 C) 150 D) 225 15 / 30 Agar x,y sonlar (x+5)2+(y-12)2=142 tenglikni qanoatlantirsa, x2+y2 ifodaning eng kichik qiymatini toping. A) 1 B) √2 C) √3 D) 2 16 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusidan katta bo’lgan uchburchaklar sonini toping. A) cheksiz ko’p B) 1 C) 2019 D) 0 17 / 30 Hisoblang A) √3/2 B) √3 C) 1/2 D) 2 18 / 30 Tomoni 2 ga teng kvadratga tashqi chizilgan aylana uzunligini toping. A) 2π B) 2π/3 C) 3π D) 4π 19 / 30 Agar f(x)=4x3-6x2-2x+3x .log3e bo’lsa, u holda ni toping. A) 1 B) e C) √2e D) 3e 20 / 30 Quyidagilardan qaysi biri barcha lar uchun ma’noga ega (aniqlangan)? A) ⁴ᴷ⁺³√-√2k+1 B) 4k+1/1/8:7-1/56 C) (512-1/2⁻⁹)° D) ²ᴷ⁺⁴v2k+1/k²+1 21 / 30 Agar va b-a=4 bo’lsa, a+b ni toping. A) 3,5 B) 2 C) 3 D) 4 22 / 30 Tomoni 25 ga diagonallaridan biri 4 ga teng bo’lgan rombning yuzini toping. A) 8√5 B) 32 C) 16 D) 24√5 23 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 52 B) 48 C) 54 D) 108 24 / 30 Quyidagi va to’g’ri chiziqlarning o’zaro holatini aniqlang. A) o’zaro perpendikulyar B) o’zaro kesishadi C) o’zaro parallel D) ayqash to’gri chiziqlar 25 / 30 Perimetri 60 ga teng bo’lgan parallelogrammning tomonlari nisbati 2:3 ga, o’tkir burchagi esa 300 ga teng. Parallelogrammning yuzini toping. A) 48√3 B) 54 C) 108 D) 52√3 26 / 30 (-3;4) nuqtaga absissa, ordinata o’qlariga va koordinata boshiga nisbatan simmetrik bo’lgan nuqtalarni tutashtirishdan hosil bo’lgan uchburchakning eng kata tomonini toping. A) 12 B) 24 C) 10 D) 14 27 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) 2√2 B) 4 C) √2 D) 2 28 / 30 Agar geometrik progressiyaning ketma–ket dastlabki uchta hadining yig’indisi 62 ga, ularning o’nli logarifmlari yig’indisi 3 ga teng bo’lsa, shu geometrik progressiyaning birinchi hadini toping. A) 10 yoki 50 B) 10 C) 50 D) 2 yoki 50 29 / 30 sonning oxirgi raqamini toping. A) 2 B) 8 C) 4 D) 6 30 / 30 Bog’bon uch kun davomida o’nta daraxt ko’chati o’tqazishi lozim. Agar bog’bon bir kunda eng kamida bitta ko’chat o’tqazadigan bo’lsa, u shu ishni kunlar bo’yicha necha xil usul bilan taqsimlashi mumkin? A) 36 B) 32 C) 30 D) 25 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Author: InfoMaster Foydali bo'lsa mamnunmiz