Uy » Abituriyent » Matematika abituriyent » Matematika abituriyent testi №1 Matematika abituriyent Matematika abituriyent testi №1 InfoMaster Aprel 5, 2022 97 Ko'rishlar 1 izoh SaqlashSaqlanganOlib tashlandi 0 1 Vaqtingiz tugadi! Matematika abituriyentlar uchun №1 1 / 30 200 kishidan iborat turistlar guruxida 140 kishi ingliz tilini, 90 kishi nemis tilini va 46 kishi ikkala tilni biladi. Ikkala tilni xam bilmaydigan turistlar necha foizni tashkil qiladi. A) 16 B) 4 C) 8 D) 12 2 / 30 sistemadan x+y ning qiymatini toping. A) 6 B) -12 C) 35/4 D) 12 3 / 30 a=sin 1; b=sin 2; c=sin 3; d=sin 4 va e=sin 5 sonlarni kamayish tartibida joylashtiring. A) a>b>c>d>e B) b>a>c>d>e C) b>c>a>d>e D) e>b>a>d>c 4 / 30 Ikki burchagi graduslari yig’indisi uchinchi burchagi gradusiga teng bo’lgan uchburchak qanday uchburchak deyiladi? A) to’gri burchakli uchburchak B) o’tkir burchakli uchburchak C) teng tomonli uchburchak D) o’tmas burchakli uchburchak 5 / 30 Agar f(x)=4x3-6x2-2x+3x .log3e bo’lsa, u holda ni toping. A) 3e B) √2e C) 1 D) e 6 / 30 Ushbu (y6+y3+1)(y3+1)(y3-1)-y6+y3+1 ifodani soddalashtish natijasida ko’phad hosil qilindi. Uning nechta hadi bor? A) 2 B) 3 C) 4 D) 1 7 / 30 AA1A2A3A4A5A6 muntazam oltiburchakli piramidaning hajmi ga va balandligi 2 ga teng bo‘lsa, u holda AA2A6 kesim yuzini toping. A) 3 B) √5 C) √15 D) 2 8 / 30 Bir vaqtning o’zida 9,13, . . . ,405 va 15,21, . . . ,255 ketma–ketliklarning hadlari bo’lgan sonlarning eng kattasi va eng kichigining ayirmasini toping A) 228 B) 231 C) 150 D) 147 9 / 30 sistemadan x+y+z ning qiymatini toping. A) 150/41 B) 140/41 C) -139/41 D) 139/41 10 / 30 Ostki asosining yuzi 20π va ustki asosining yuzi 10π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda kesik konus hajmining shar hajmiga nisbatini toping. A) 3√3+1/5 B) 2√2/3 C) 3√2+2/4 D) 5√3+3/3 11 / 30 sin2x-cos2x=1 tenglama [-π; 2π] oraliqda nechta ildizga ega? A) 10 B) 9 C) 7 D) 6 12 / 30 Ostki asosining yuzi 16π ga va ustki asosining yuzi 4π ga teng bo‘lgan kesik konus berilgan. Agar kesik konusga shar ichki chizilgan bo‘lsa, u holda sharning hajmini toping. A) (5√3+3)π/3 B) 8√2π/5 C) 3√2π/4 D) 64√2π/3 13 / 30 Soddalashtiring. (0<m<7) A) 7 B) m C) 7-2m D) 2m-7 14 / 30 qonuniyat bo’yicha harakatlanayotgan moddiy nuqta harakatning 200- metrida qanday tezlikka (m/s) erishadi? A) 42 B) 36 C) 32 D) 38 15 / 30 O’qishni bilmaydigan bola alifbening A,A,A, N,N, S- 6 ta harflarini ixtiyoriy ravishda terib chiqadi. Bunda ANANAS so’zining hosil bo’lish ehtimolini toping. A) 1/60 B) 5/24 C) 6/720 D) 5/720 16 / 30 Radiusi 1 ga teng aylana uchta yoyga bo`lingan. Ularga mos markaziy burchaklar 1, 2 va 6 sonlariga proporsional. Yoylardan eng kattasining uzunligini toping. A) 3π/2 B) 3π/4 C) 4π/3 D) 2π/3 17 / 30 Qaysi javobda faqat juft funksiyalar ko’rsatilgan? A) 1,4 B) 1, 3 C) 3, 4 D) 2, 3 18 / 30 Radiuslari orasidagi burchagi 36o va radiusi 5 ga teng bo`lgan sektor yoyining uzunligini toping. A) 2π/3 B) π C) π/2 D) 2π 19 / 30 Hisoblang. A) 2/17 B) 2/34 C) 15/34 D) 17/34 20 / 30 Arifmetik progressiyada a17=33 va a45=89. Progressiyaning birinchi hadi hamda ayirmasining o’rta geometrigini toping. A) 2 B) √2 C) 4 D) 2√2 21 / 30 Anvar tub son o’yladi va o’ylagan sonini 5 ga ko’paytirib, 8 ni ayirgan edi, yana tub son hosil bo’ldi. Anvar qanday son o’ylagan? A) 374389 B) 2 C) aniqlab bo’lmaydi D) 412967 22 / 30 Hisoblang: A) -1 B) 2 C) 1 D) 3 23 / 30 Uchburchakning balandligi 12 ga teng bo’lib, u asosni 5:16 nidbatda bo’ladi. Agar asosning uzunligi 21 ga teng bo’lsa, uchburchakning perimetrini toping A) 48 B) 52 C) 54 D) 108 24 / 30 Bekzodda 50 so’m va Sobirda 70 so’m pul bor edi. Anvar Bekzodga o’z pulining 10 foizini bergandan so’ng, Bekzod Sobirga pulining yarmini berdi. So’ng Sobir Anvarga pulining 10 foizini berdi. Anvar o’zidagi pullarini hisoblab, pullari dastlabki holdagi puli bilan teng ekanligini bildi. Anvarda qancha pul bo’lgan? A) 100 B) 127 C) 375 D) 400 25 / 30 Agar bank qo`yilgan pulga 40% yillik foyda bersa, qo`yilgan 5000 so`m pul bir yildan keyin qancha bo`ladi ? A) 6900 B) 6200 C) 7200 D) 7000 26 / 30 Ushbu arifmetik progressiyaning manfiy hadlari yig’indisini toping. A) -0,25 B) -0,5 C) -1 D) -0,75 27 / 30 Soddalashtiring. A) 2018a/a+1 B) 2018 C) a+1 D) 2019 28 / 30 funktsiyaning aniqlanish sohasini toping. A) [1;2] B) (-∞;1)v(2;∞) C) (-∞;1]v[2;∞) D) (1;2) 29 / 30 O’q kesimining diagonallari o’zaro perpendikulyar bo’lgan kesik konus yasovchisi va asos tekisligi orasidagi burchak ga teng. Agar o’q kesimining diagonali ga teng bo’lsa, kesik konus asosining yuzini toping. A) πa²(1-2sinα/4sin²) B) πa²/4cos²α C) πa²/4sin²α D) πa²(1+2cosα/4sin²) 30 / 30 Tomoni 2 ga teng kvadratga tashqi chizilgan aylana uzunligini toping. A) 2π B) 2π/3 C) 4π D) 3π 0% Testni qayta ishga tushiring Baholash mezoni To'g'ri javob uchun 3,1 ball. Fikr-mulohaza yuboring Tomonidan Wordpress Quiz plugin Author: InfoMaster Foydali bo'lsa mamnunmiz