Uy » Online olimpiada » Matematika olimpiada » 11-sinf Matematika olimpiada №2 Matematika olimpiadaTuman 2019-2020 o'quv yili 11-sinf Matematika olimpiada №2 InfoMaster Avgust 19, 2024 5 Ko'rishlar 3 izohlar SaqlashSaqlanganOlib tashlandi 0 0 12345678910111213141516171819202122232425 Vaqtingiz tugadi! 11-sinf Matematika olimpiada №2 2019-yil tuman bosqichida tushgan savollar 1 / 25 1. Tenglamani yeching: A) (1;-2) B) (2;1) C) (-2;1) D) (1;-2) 2 / 25 2. bo‘lsa, nimaga teng? A) 7 B) 5 C) 3 D) 9 3 / 25 3. y=6sin2x+sin12x funksiyaning hosilasini toping. A) 24sin5xcos7x B) 24cos7xcos5x C) 24sin7xsin5x D) −24sin7xcos5x 4 / 25 4. Agar 2a =27, 3c=16 bo’lsa a ∙ ? ning qiymatini toping. A) 12 B) 11 C) 10 D) 13 5 / 25 5. Tengsizlikni yeching. A) (4/3;3) B) (5/3;2) C) (1/2;∞) D) (2/3;2) 6 / 25 6. Bir savdogar 1 mеtrini 1200 tiyindan olgan matosini yuvib, kuritgandan so`ng 1800 tiyindan sotyapti. Mato yuvilib kuritilganidan so`ng 20 foizi qisqardi. Bularga ko`ra savdogar nеcha foiz foyda ko`radi? A) 15 B) 20 C) 10 D) 18 7 / 25 7. funksiyaning aniqlanish sohasini toping. A) (-∞;2/3)∪(2/3;∞) B) (2/3;∞) C) (-∞;4/3)∪(4/3;∞) D) (-∞;4/3) 8 / 25 8. Tenglamani yeching: |x²-3x-2|=x²+3|x+2|+4 A) (−∞;−2] B) [−2;0] C) [2;∞) D) [−2;∞) 9 / 25 9. funksiyaning boshlang`ich funksiyasini toping. A) IV B) I C) III D) II 10 / 25 10. 3cos2x-3 sin2x=0 trigonometrik tenglamani yeching. A) π/6+πk; k∈Z B) π/12+2πk; k∈Z C) π/12+πk/2; k∈Z) D) π/12+πk; k∈Z 11 / 25 11. |x²+2x-8|=3a tenglama a ning qanday qiymatlarida 3 ta haqiqiy yechimga ega bo`ladi. A) a=3 B) a>3, a=0 C) (0;3) D) 1 12 / 25 12. f(x)=70cosxcos6x uchun boshlang`ich funksiya toping. A) 7sin5x−5sin7x+c B) 7sin5x+5sin7x+C C) −7cos5x−5cos7x+c D) 7cos5x−5cos7x+c 13 / 25 13. Ifodani soddalashtiring: A) 1+√(a+1) B) √(a²-1) C) 1−√(a-1) D) 0 14 / 25 14. Poyezd 3 minutda 7 kilometrmasofani , motosikl 5 minutda 7 kilometrmasofanibosibo`tdi. Mototsikltezligipoyezdtezliginingnecha % initashkilqiladi? A) 61% B) 60% C) 70% D) 71% 15 / 25 15. Bitta tekislikda yotuvchi n ta turli tog`ri chiziq o`tkazilgan. Ularning ixtiyoriy ikkitasi parallel emas va ixtiyoriy uchtasi bitta nuqtadan o`tmaydi ,ya`ni bitta nuqtada kesishmaydi. Bu to`g`ri chiziqlar tekislikni 1276 qismga ajratadi. n ni aniqlang? A) 52 B) 49 C) 51 D) 50 16 / 25 16. ifodani soddalshtiring A) 2cosα B) 1 C) cosα D) 2sinα 17 / 25 17. GH kesmani O nuqta, G nuqtadan boshlab hisoblaganda, 5 : 7 kabi, P nuqtaesa 5:11 kabi nisbatda bo’ladi. O va P nuqtalar orasidagi masofa 30 sm bo’lsa, GH kesmaning uzunligini toping. A) 18 B) 288 C) 234 D) 72 18 / 25 18. Agar f(g(x))= − x+13 bo`lsa, f(x) va g(x) to`g`ri chiziqlar orasidagi burchakni toping . A) π/3 B) π/4 C) π/2 D) 0 19 / 25 19. f(x)=x³/3-x²-35x+2 funksiya uchun f `(x)=0 bo`lsa x ni toping. A) −7 va 5 B) −7 va −5 C) 5 va 7 D) −5 va 7 20 / 25 20. Agar lg5=a va lg3=b bo`lsa, log308 ni toping. A) 1+b B) 3(1−a) C) (3(1-a))/(1+b) D) (1−a)(1+b) 21 / 25 21. Tenglamani yeching: A) πk; π−arcctg4+πk; k∈Z B) π −arcctg4+πk; k∈Z C) πk; −arcctg4+πk; k∈Z D) arccos0,8+2πk; k∈Z 22 / 25 22. Perimetri 4 ga o`tkir burchagi 30oga va shu burchak qarshisidagi tomoni √3 ga teng bo`lgan uchburchakka ichki chizlgan aylana radiusini toping. A) (1+√3)/2 B) (√3-1)/2 C) 4√3+7 D) 7-4√3 23 / 25 23. a+b=−1 a+c=6 va b+c=1 bo`lsa, a² (3b+3c+2a)+b² (3a+3c+2b)+c² (3a+3b+2c) ning son qiymatini toping. A) 216 B) 45 C) 27 D) 100 24 / 25 24. Radiusi 6 ga teng bo`lgan uchta aylana o`zaro tashqi urinishidan hosil bo`lgan egri chiziqli uchburchakka ichki chizilgan aylana radiusini toping. A) 6-2√3 B) 1 C) 4√3-6 D) 2√2−1 25 / 25 25. ni hisoblang. A) -13 B) 13 C) 12 D) -12 0% Testni qayta ishga tushiring Tomonidan Wordpress Quiz plugin Author: InfoMaster Foydali bo'lsa mamnunmiz