Matematika attestatsiya №5 Yanvar 24, 2022Yanvar 24, 2022 da chop etilgan InfoMaster tomonidan Matematika attestatsiya №5 ga 1 fikr bildirilgan 0% 2 ovozlar, 1 o'rtacha 0 12345678910111213141516171819202122232425262728293031323334353637383940 Matematika fanidan attestatsiya savollari №5 1 / 40 funksiyaning eng kichik musbat davrini toping. A) 24 B) 12 C) 26 D) 18 2 / 40 Agar ning qiymatini toping. A) 75/23 B) 23/75 C) 23/25 D) 3 3 / 40 Agar va bo'lsa f(4) ning qiymatini toping. A) 4 B) 35 C) 12 D) 11 4 / 40 Muntazam uchburchak ichidan olingan nuqtadan uchburchak tomonlarigacha bo'lgan masofalar mos holda c(2;3;1), b(1;2;1) va a(1;2;3) vektorlarning absolut qiymatlariga teng bo'lsa, uchburchakning balandligini toping. A) 16 B) 18 C) √6+√14 D) 2√14+√6 5 / 40 Qadam uzunligi deb biricnhi iz tovon oxiridan ikkinchi iz tovon oxirigacha bo'lgan masofaga aytiladi. Erkak kishi yurayotganda uning qadami va qadamlar soni orasidagi bog'lanish quyidagi formula bilan ifodalanadi: (n/P) = 140. Bu yerda n – bir minutdagi qadamlar soni. P – qadam uzunligi (m). Hikmat 1 minutda 70 qadam bossa, formula yordamida uning qadami uzunligini toping. A) 0,6 m yoki 60 cm B) 0,5 m yoki 50 cm C) 0,7 m yoki 70 cm D) 0,9 m yoki 90 cm 6 / 40 Ushbu sistemaga ko'ra (ac+bd)² ni toping. A) 3 B) 4 C) 1 D) 2 7 / 40 Soddalashtiring. A) (a-1)/(a-3) B) (a-1)/(1-b) C) (a+1)/(-a-3) D) (b+2)/(1-b) 8 / 40 Shaharlar orasidagi masofa xaritada 5 sm ga teng bo`lsava xaritaning masshtabi 1:4000000 bo`lsa , shaharlar orasidagi haqiqiy masofa qanchaga teng ? A) 20 km B) 0,2km C) 2 km D) 200 km 9 / 40 Standart shaklda yozing 0,000000000000013 1,3·10-12 1,3·10-13 1,3·10-14 1,3·10-15 A) 1 B) 3 C) 4 D) 2 10 / 40 sin a = x va 1+cos a= y bo‘lsa, x va y o‘zaro qanday bog‘langan? A) 2 B) 3 C) 1 D) 4 11 / 40 cos75° ·cos 45° ·cos15° ni hisoblang. A) √2/8 B) √3/8 C) 1/8 D) √3/4 12 / 40 Bo‘yi 130 cm, eni 90 cm, balandligi 60 cm bo‘lgan idishdagi suvning 234 litri olindi. Idishda qolgan suvning (sathi) balandligini toping. A) 25 B) 40 C) 35 D) 20 13 / 40 Hisoblang: A) sin10° B) cos10° C) cos50° D) 1 14 / 40 A(4;6), B(2;1), C(6;1) nuqtalarni tutashtirishdan hosil bo‘ladigan uchburchak yuzini toping. A) 20 B) 8 C) 15 D) 10 15 / 40 Asoslari 5 va 5√7 ga teng bo‘lgan trapetsiyaning yuzini teng ikkiga bo‘luvchi kesma asoslarga parallel. Shu kesma uzunligini toping. A) 10 B) 6√7 C) 4√7 D) 8 16 / 40 Tenglamalar sistemani yeching: A) (9; 0), (2; 7) B) (9; 0), (28; -1) C) (7; 2), (28; -1) D) (2; 3) 17 / 40 Tenglamalar sistemasining ildizlari yig‘indisini toping. A) 14 B) 10 C) 20 D) 12 18 / 40 Hisoblang: A) 19/20 B) 10/11 C) 20/21 D) 9/10 19 / 40 Tengsizlik nechta butun juft yechimga ega? A) 112 B) 116 C) 110 D) 115 20 / 40 an - arifmetik progressiyaning umumiy hadi bo‘lsa, quyidagi nisbatni toping: A) 7 B) 6 C) 8 D) 5 21 / 40 Ifodaning qiymatini quyidagi sonlardan qaysi biriga teng. 319·25 316·28 313·28 329·28 A) 4 B) 1 C) 2 D) 3 22 / 40 Rasmdagi shakl perimetrini toping. A) 24 B) 32 C) 28 D) 30 23 / 40 sonlari geometrik progressiyaning ketma-ket hadlari bo‘ladigan barcha n larning yig‘indisini (agar bitta qiymati bo‘lsa, o‘zini) toping. A) 24 B) 35 C) 14 D) 23 24 / 40 1+sin 2x = 7(sin x + cos x) tenglamani yeching. A) -π/4+πk, k∈Z B) π/4+πk, k∈Z C) 0 D) Ø 25 / 40 Kvadratga ikkita yarim aylana ichki chizilgan. Bo‘yalgan soha yuzini toping. A) 8(π+2) B) 32 C) 16(π-2) D) 64 26 / 40 Hisoblang: A) 0 B) 1/32 C) -√3/2 D) -1/2 27 / 40 sonlarini taqqolsang. A) a B) c C) b D) c 28 / 40 tenglamaning ildizlari yig‘indisini (agar ildizi bitta bo‘lsa, o‘zini) toping. A) -2 B) 5 C) 8 D) 3 29 / 40 x²-√11x+1=0 0 bo‘lsa, A) 11 B) 9 C) 10 D) 12 30 / 40 ABC to‘g‘ri burchakli uchburchakning og‘irlik markazi G nuqta. Bunda AB ⊥ BC, AG ⊥ GB va AG = 8 bo‘lsa, BG ni toping. A) 6 B) 4√2 C) 4√3 D) 3√2 31 / 40 Agar geometrik progressiyaning umumiy hadi bn= 3·2n bo‘lsa, ni toping. A) 1 B) 2 C) 4 D) 3 32 / 40 Kvadratlarning yuzlari yig‘indisini toping. A) 11 B) berilganlar yetarli emas C) 22 D) 121 33 / 40 3x3 o‘lchamli kvadratning tugunlarida 16 ta nuqta belgilanib, ularning o‘ng tomondan eng yuqorisidagi A bilan belgilangan. Bir uchi A nuqtada, qolgan uchlari qolgan 15 ta nuqtada orasidan tanlanadigan uchburchaklarning sonini toping. A) 100 B) 25 C) 96 D) 105 34 / 40 Tenglikdan foydalanib a ni toping. (a+b+c+d)·(a-b-c+d)=(a-b+c-d)·(a+b-c-d) A) cd/b B) bc/d C) bd/c D) 1 35 / 40 ABC o‘tkir burchakli uchburchakning BC asosiga AD balandlik, AC yon tomoniga BE balandlik o‘tkazilgan. Bunda CE =2AE = 8, DC = 6 bo‘lsa, BD ni toping. A) 12 B) 8 C) 10 D) 6 36 / 40 Tenglamani yeching: A) 5 B) -6; 5 C) 6; -5 D) -6 37 / 40 Ifodaning qiymatini toping. A) 0,04 B) 0,0(2) C) 0,0(4) D) 0,(04) 38 / 40 Agar α=60°, β=70°, γ=50° bo‘lsa, tgα+ tgβ+ tgγ yig‘indi quyidagilardan qaysi biriga teng? A) √3ctg40° tg70° B) 2√3tg50° tg70° C) √3tg50° tg70° D) 4 √3tg50° tg70° 39 / 40 P(x+1)=x³+3x²-2x+a+3 ko‘phadi berilgan. P(x+2) ko‘phadining koeffitsiyentlari yig‘indisini 8 ga teng bo‘lsa, a nechaga teng? A) -6 B) -4 C) 5 D) -3 40 / 40 b ning qanday qiymatlarida M(2;1) nuqtadan 4x - 3y + b = 0 to‘g‘ri chiziqqacha masofa 2 ga teng bo‘ladi? A) 5 yoki –15 B) 4 yoki –12 C) 6 D) 3 yoki –8 O'rtacha ball 0% 0% Testni qayta ishga tushiring Fikr-mulohaza yuboring tomonidan Wordpress Quiz plugin Matematika attestatsiya